3.3 Solutions 207
c
(
1
λj+ 1
−
1
λj
)
=c×(20.556 cm−^1 )=
^2
I 0
Moment of inertia I 0 =
4 π^2 c× 20. 556
=
6. 63 × 10 −^27 erg−s−^1
4 π^2 × 3 × 1010 cm−s−^1 × 20 .556 cm−^1
= 2. 727 × 10 −^40 g−cm^2
I 0 =μr^2
μ=
m(H)m(Cl)
[m(H)+m(Cl)]
=
1 × 35 × 1. 67
1 + 35
× 10 −^24 g
= 1. 62 × 10 −^24 g
r=
(
I 0
μ
) 1 / 2
=
(
2. 727 × 10 −^40
1. 62 × 10 −^24
)
= 1. 3 × 10 −^8 cm= 1. 3 A ̊
3.60 For the 3-D isotropic oscillator the energy levels are given by
EN=Ek+El+Em=
(
3
2
+nk+nl+nm
)
ω
whereωis the angular frequency
N=nk+nl+nm= 0 , 1 , 2 ...
For a given value ofN, various possible combinations ofnk,nlandnmare
given in Table 3.5, and the degeneracy indicated.
Table 3.5Possible combinations ofnk,nlandnmand degeneracy of energy levels
Nnl nm nn Degeneracy (D)
0 0 0 0 Non-degenerate
1100Threefold(1+2)
010
001
2 1 1 0 Sixfold (1+ 2 +3)
101
011
200
020
002
3 1 1 1 Tenfold (1+ 2 + 3 +4)
120
102
210
201
021
012
300
030
003