208 3 Quantum Mechanics – II
It is seen from the last column of the table that the degeneracy D is given by
the sum of natural numbers, that is,=n(n+1)/2, if we replacenbyN+1,
D=(N+1)(N+2)/2.
3.61 As the time evolves, the eigen function would be
ψ(x,t)=
∑
n= 0. 1 Cnψn(x)exp(−iEnt/)
=C 0 ψ 0 (x)exp(−iE 0 t/)+C 1 ψ 1 (x)exp(−iE 1 t/)
The probability density
|ψ(x,t)|^2 =C^20 +C 12 +C 0 C 1 ψ 0 (x)ψ 1 (x)[exp(i(E 1 −E 0 )t/)
−exp(−i(E 1 −E 0 )t/)]
=C 02 +C 12 + 2 C 0 C 1 ψ 0 (x)ψ 1 (x) cosωt
where we have used the energy differenceE 1 −E 0 =ω. Thus the probability
density varies with the angular frequency.
3.62
∑
n= 1 , 2 , 3
|Cn|^2 En=C 02 E 0 +C 12 E 1 +C^22 E 2
=
(
1
2
)
·
ω
2
+
(
1
3
)
·
3 ω
2
+
(
1
6
)
·
5 ω
2
=
7 ω
6
.
3.63 (a)ψ 0 (x)=Aexp(−x^2 / 2 a^2 )
Differentiate twice and multiply by−^2 / 2 m
−
(
^2
2 m
)
d^2 ψ 0
dx^2
=
(
A^2
2 ma^2
)(
1 −
x^2
a^2
)
exp
(
−
x^2
2 a^2
)
=
(
^2
2 ma^2
)
ψ 0 −
(
^2 x^2
2 ma^4
)
ψ 0
or−
(
^2
2 m
)
d^2 ψ 0
dx^2
+
(
^2 x^2
2 ma^4
)
ψ 0 =
(
^2
2 ma^2
)
ψ 0
Compare the equation with the Schrodinger equation
E=
^2
2 ma^2
=
ω
2
ω=
ma^2
(1)
ora=
(
mω
) 1 / 2
Same relation is obtained by setting
V=
^2 x^2
2 ma^4
=
mω^2 x^2
2
(b)ψ 1 =Bxexp
(
−x
2
2 a^2
)
Differentiate twice and multiply by−
2
2 m
−
^2
2 m
d^2 ψ 1
dx^2
=
B^2 x^3 exp
(
x^2
a
)
2 ma^4
+
3 B^2 exp
(
−x
2
2 a^2
)
2 ma^2