216 3 Quantum Mechanics – II
∴(Sp+Sn)·(Sp+Sn)=S·S
Sp^2 +Sn^2 +2Sp·Sn=S^2 = 0
(^1) / 2 (1/ 2 +1)+ (^1) / 2 (1/ 2 +1)+2Sp·Sn= 0
Or Sp·Sn=− 3 /4. Orσp·σn=− 3
(ii) For triplet state S= 1
3 / 4 + 3 / 4 +2Sp·Sn=1(1+1)
∴Sp·Sn= 1 / 4
But Sp=^1 / 2 σpand Sn=^1 / 2 σn
∴σp·σn= 1
3.80 From the definition of angular momentum
L=r×p, we can write
L=
∣
∣
∣
∣
∣∣
ijk
xyz
pxpypz
∣
∣
∣
∣
∣∣
=i(ypz−zpy)+j(zpx−xpz)
+k(xpy−ypx)
=iLx+jLy+kLz
Fig. 3.26Cartesian and polar
coordinates
Lx=ypz−zpy=−i
(
y
∂
∂z
−z
∂
∂y
)
Ly=zpx−xpz=−i
(
z
∂
∂x
−x
∂
∂z
)
(1)
Lz=xpy−ypx=−i
(
x
∂
∂y
−y
∂
∂x
)
Ifθ is the polar angle,φthe azimuthal angle andr the radial distance,
(Fig. 3.26). Then