1000 Solved Problems in Modern Physics

(Grace) #1

218 3 Quantum Mechanics – II


NowLzg(φ)=−i∂∂φg=mg(φ)
Thus the z-component of angular momentum is quantized with eigen
value.
3.81 One can do similar calculations forLxandLyas in Problem 3.80 and obtain
Lx
i


=sinφ


∂θ

+cotθcosφ


∂φ
Ly
i

=−cosφ


∂θ

+cotθsinφ


∂φ

3.82 UsingL^2 =L^2 x+L^2 y+L^2 z, the commutator with total angular momentum
squared can be evaluated


[L^2 ,Lz]=

[

L^2 x+L^2 y+L^2 z,Lz

]

=

[

L^2 x+L^2 y,Lz

]

=Lx[Lx,Lz]+[Lx,Lz]Lx+Ly

[

Ly,Lz

]

+

[

Ly,Lz

]

Ly (1)
=−iLxLy−iLyLx+iLyLx+iLxLy= 0
Similarly

[

L^2 ,Lx

]

=[L^2 ,Ly]=[L^2 ,L]= 0

3.83 L^2 =L^2 x+L^2 y+L^2 z
Using the expressions forLx,LyandLzfrom problem (3.81)


L^2
(i)^2

=

(

sinφ


∂θ

+cotθcosφ


∂φ

)(

sinφ


∂θ

+cotθcosφ


∂φ

)

+

(

−cosφ


∂θ

+cotθsinφ


∂φ

)(

−cosφ


∂θ

+cotθsinφ


∂φ

)

+

(



∂φ

)(



∂φ

)

=sin^2 φ

∂^2

∂θ^2

+cot^2 θcos^2 φ

∂^2

∂φ^2

−sinφcosφcosec^2 θ


∂φ

+cos^2 φcotθ


∂θ

+cos^2 φ

∂^2

∂θ^2

+cot^2 θsin^2 φ

∂^2

∂φ^2

+sinφcosφcosec^2 θ


∂φ

+sin^2 φcotθ


∂θ

+

∂^2

∂φ^2
The cross terms get cancelled and the expression is reduced to

∂^2
∂θ^2

+

1

sin^2 θ

∂^2

∂φ^2

+cotθ


∂θ

∇^2 ψ=

1

r^2


∂r

(

r^2

∂ψ
∂r

)

+

1

r^2 sinθ


∂θ

(

sinθ

∂ψ
∂θ

)

+

1

r^2 sin^2 θ

∂^2 ψ
∂φ^2
Free download pdf