218 3 Quantum Mechanics – II
NowLzg(φ)=−i∂∂φg=mg(φ)
Thus the z-component of angular momentum is quantized with eigen
value.
3.81 One can do similar calculations forLxandLyas in Problem 3.80 and obtain
Lx
i
=sinφ
∂
∂θ
+cotθcosφ
∂
∂φ
Ly
i
=−cosφ
∂
∂θ
+cotθsinφ
∂
∂φ
3.82 UsingL^2 =L^2 x+L^2 y+L^2 z, the commutator with total angular momentum
squared can be evaluated
[L^2 ,Lz]=
[
L^2 x+L^2 y+L^2 z,Lz
]
=
[
L^2 x+L^2 y,Lz
]
=Lx[Lx,Lz]+[Lx,Lz]Lx+Ly
[
Ly,Lz
]
+
[
Ly,Lz
]
Ly (1)
=−iLxLy−iLyLx+iLyLx+iLxLy= 0
Similarly
[
L^2 ,Lx
]
=[L^2 ,Ly]=[L^2 ,L]= 0
3.83 L^2 =L^2 x+L^2 y+L^2 z
Using the expressions forLx,LyandLzfrom problem (3.81)
L^2
(i)^2
=
(
sinφ
∂
∂θ
+cotθcosφ
∂
∂φ
)(
sinφ
∂
∂θ
+cotθcosφ
∂
∂φ
)
+
(
−cosφ
∂
∂θ
+cotθsinφ
∂
∂φ
)(
−cosφ
∂
∂θ
+cotθsinφ
∂
∂φ
)
+
(
−
∂
∂φ
)(
−
∂
∂φ
)
=sin^2 φ
∂^2
∂θ^2
+cot^2 θcos^2 φ
∂^2
∂φ^2
−sinφcosφcosec^2 θ
∂
∂φ
+cos^2 φcotθ
∂
∂θ
+cos^2 φ
∂^2
∂θ^2
+cot^2 θsin^2 φ
∂^2
∂φ^2
+sinφcosφcosec^2 θ
∂
∂φ
+sin^2 φcotθ
∂
∂θ
+
∂^2
∂φ^2
The cross terms get cancelled and the expression is reduced to
∂^2
∂θ^2
+
1
sin^2 θ
∂^2
∂φ^2
+cotθ
∂
∂θ
∇^2 ψ=
1
r^2
∂
∂r
(
r^2
∂ψ
∂r
)
+
1
r^2 sinθ
∂
∂θ
(
sinθ
∂ψ
∂θ
)
+
1
r^2 sin^2 θ
∂^2 ψ
∂φ^2