3.3 Solutions 221
=[(1−0)(1+ 0 +1)]^1 /^2 | 1 >=
√
2 | 1 >
J+
∣
∣
∣ 3 >=[[1−(−1)](1− 1 +1)]
(^12)
∣
∣
∣ 2 >=
√
2 | 2 >
J−| 1 >=[(j+m)(j−m+1)]^1 /^2 | 2 >
=[(1+1)(1− 1 +1)]^1 /^2 | 2 >=
√
2 | 2 >
J−| 2 >=
√
2 | 3 >
J−| 3 >= 0
Matrices forJxandJy:
(Jx) 11 =< 1 |Jx| 1 >=^1 / 2 < 1 |J++J−| 1 >
=^1 / 2 < 1 |J+| 1 >+
1
2
< 1 |J−| 1 >
=^1 / 2 [(j−m)(j+m+1)]^1 /^2 δm′m+ 1
+^1 / 2 [(j+m)(j−m+1)]^1 /^2 δm′,m− 1 = 0
Similarly; (Jx) 22 =(Jx) 33 = 0
(Jx) 12 =< 1 |Jx| 2 >= 1 / 2 < 1 |J++J−| 2 >= 1 / 2 < 1 , 1 |J++J−| 1 , 0 >
=^1 / 2 [(j−m)(j+m+1)]^1 /^2 δm′m+ 1 + 1 /2[(j+m)(j−m+1)]^1 /^2 δm′m− 1
The second delta is zero
∴ (Jx) 12 =
1
2
[(1+0)(1+ 0 +1)]^1 /^2 =
√
2
Similarly, (Jx) 21 =(Jx) 23 =(Jx) 32 =√ 2
By a similar procedure the matrix elements ofJycan be found out. Thus
Jx=
√
2
⎛
⎝
010
101
010
⎞
⎠;Jy=√
2
⎛
⎝
0 −i 0
i 0 −i
0 i 0
⎞
⎠;Jz=
⎛
⎝
10 0
00 0
00 − 1
⎞
⎠
(b) For the matrix elements ofJwe can use the relation
<j′m′|J^2 |jm>=j(j+1)^2 δj′jδm′m
Thus (J^2 ) 11 =(J^2 ) 22 =(J^2 ) 33 =1(1+1)^2 = 2 ^2
(J^2 ) 12 =(J^2 ) 21 =(J^2 ) 13 =(J^2 ) 31 =(J^2 ) 23 =(J^2 ) 32 = 0
J^2 = 2 ^2
⎛
⎝
100
010
001
⎞
⎠
Alternatively,J^2 =Jx^2 +Jy^2 +Jz^2
Using the matrices which have been derived the same result is obtained.
3.86 With the addition ofj 1 =1 andj 2 = 1 /2, one can getJ= 3 /2or^1 / 2 .Inthe
(J,M) notation in all one gets 6 states
ψ
(
3
2
,
3
2
)
,ψ
(
3
2
,
1
2
)
,ψ
(
3
2
,−
1
2
)
,ψ
(
3
2
,−
3
2
)
andψ
(
1
2
,
1
2
)
,ψ
(
1
2
,−
1
2
)