1.1 Basic Concepts and Formulae 7
Ln(x)=ex
dn
dxn
(xne−x) (Rodrigue’s formula) (1.43)
The first few polynomials are:
Lo(x)= 1 ,L 1 (x)=−x+ 1 ,L 2 (x)=x^2 − 4 x+ 2
L 3 (x)=−x^3 + 9 x^2 − 18 x+ 6 ,L 4 (x)=x^4 − 16 x^3 + 72 x^2 − 96 x+24 (1.44)
Generating function:
e−xs/(1−s)
1 −s
=
∑∞
n= 0
Ln(x)sn
n!
(1.45)
Recurrence formulas:
Ln+ 1 (x)−(2n+ 1 −x)Ln(x)+n^2 Ln− 1 (x)= 0
xL′n(x)=nLn(x)−n^2 Ln− 1 (x) (1.46)
Orthonormal properties:
∫∞
0
e−xLm(x)Ln(x)dx= 0 m =n (1.47)
∫∞
0
e−x{Ln(x)}^2 dx=(n!)^2 (1.48)
Bessel functions:(Jn(x))
Differential equation of ordern
x^2 y′′+xy′+(x^2 −n^2 )y= 0 n≥ 0 (1.49)
Expansion formula:
Jn(x)=
∑∞
k= 0
(−1)k(x/2)^2 k−n
k!Γ(k+ 1 −n)
(1.50)
Properties:
J−n(x)=(−1)nJn(x) n= 0 , 1 , 2 ,... (1.51)
Jo′(x)=−J 1 (x) (1.52)
Jn+ 1 (x)=
2 n
x
Jn(x)−Jn− 1 (x) (1.53)
Generating function:
ex(s−^1 /s)/^2 =
∑∞
n=−∞
Jn(x)tn (1.54)