224 3 Quantum Mechanics – II
whereF(r)=rf(r)
Lzψ 1 =−i
∂
∂φ
(cosφ+isinφ)sinθF(r)
=−i(−sinφ+icosφ)sinθF(r)
=(cosφ+isinφ)sinθF(r)
=ψ 1
Thusψ 1 is the eigen state and the eigen value is
ψ 2 =zf(r)=rcosθf(r)
Lzψ 2 =−i
∂
∂φ
(rcosθf(r))= 0
The eigen value is zero.
ψ 3 =(x−iy)f(r)=rsinθ(cosφ−isinφ)f(r)
=(cosφ−isinφ)sinθF(r)
Lzψ 3 =−i
∂
∂φ
(cosφ−isinφ)sinθF(r)
=−i(−sinφ−icosφ)sinθF(r)
=i(sinφ+icosφ)sinθF(r)
=−(cosφ−isinφ)sinθF(r)=−ψ 3
Thusψ 3 is an eigen state and the eigen value is−.
3.89 (a)Lz=−i∂
∂φ
Lzψ=−i
∂
∂φ
Af(r)sinθcosθeiφ
=(i)(−iAf(r)sinθ cosθeiφ)
=Af(r)sinθ cosθeiφ
=ψ
Therefore, thez-component of the angular momentum is.
(b)L^2 =−^2
{
∂^2
∂θ^2 +cotθ
∂
∂θ+
(
1
sin^2 θ
)
∂^2
∂φ^2
}
Expressions forLzandL^2 are derived in Problems 3.80 and 3.83.
L^2 ψ=−^2
{
∂^2
∂θ^2
+cotθ
∂
∂θ
+
(
1
sin^2 θ
)
·
∂^2
∂φ^2
}
Af(r)sinθcosθeiφ
=−^2 Af(r)eiφ
{
−4sinθcosθ+cotθ(cos^2 θ−sin^2 θ)−
sinθcosθ
sin^2 θ
}
= 6 ^2 Af(r)sinθcosθeiφ
= 6 ^2 ψ
ThusL^2 = 6 ^2
ButL^2 =l(l+1). Thereforel= 2