3.3 Solutions 227
3.93
u(θ,φ)=^1 / 4
√
15
π
sin 2θcos 2φ
=^1 / 4
√
15
π
sin^2 θ
[
(e^2 iφ+e−^2 iφ)
2
]
(1)
ButY 2 + 2 (θ,φ)=
√
15
32 π
sin^2 θe^2 iφ (2)
Y 2 − 2 (θ,φ)=
√
15
32 π
sin^2 θe−^2 iφ (3)
Adding (2) and (3)
Y 2 + 2 (θ,φ)+Y 2 − 2 (θ,φ)=
√
15
32 π
sin^2 θ(e^2 iφ+e−^2 iφ)(4)
Dividing (1) by (4) and simplifying we get
u(θ,φ)=
1
√
2
(Y 2 + 2 (θ,φ)+Y 2 − 2 (θ,φ))
We know that
L^2 Ylm=^2 l(l+1)Ylm
SoL^2 u(θ,φ)=L
(^2) [Y 22 (θ,φ)+Y 2 − 2 (θ,φ)]
√
2
=2(2+1)^2 [Y^22 (θ,φ)+√Y 22 −^2 (θ,φ)]
= 6 ^2 u(θ,φ)
Thus the eigen value ofL^2 is 6^2
3.94 The wave function is identified asψ 322
LZψ=−i
∂ψ
∂φ
= 2 ψ
Thus the eigen value ofLZis 2.
3.95 (a) Using the values,Y 10 =
√
3
4 πcosθandY^1 ,±^1 =∓
√
3
8 πsinθexp(±iφ), we
can write
ψ=
√
1
3
(
−
√
2 Y 11 +Y 10
)
f(r)
Hence the possible values ofLZare+,0