230 3 Quantum Mechanics – II
=^1 / 2 mω^2 [(x+qE/mω^2 )^2 −q^2 E^2 /m^2 ω^4 ]=^1 / 2 mω^2(
x+qE
mω^2) 2
−
q^2 E^2
2 mω^2(2)
PutX=x+mqEω 2 ; then we can writed
dx=
d
dXandd^2
dx^2=
d^2
dX^2
Equation (1) becomes
(
−^2
2 md^2
dX^2+
1
2
mω^2 X^2)
ψn(X)=(
En+q^2 E^2
2 mω^2)
ψn(X)(3)Left hand side of (3) is the familiar Hamiltonian for the Simple harmonic
oscillator. The modified eigen values are then given by the right hand sideEn+q^2 E^2
2 mω^2=
(
n+1
2
)
ωorEn=(
n+1
2
)
ω−q^2 E^2 / 2 mω^2 (4)3.99 The matrix ofH′is(H′)=(
H′ 11 H′ 12
H′ 21 H′ 22
)
,withH 12 ′ =H 21 ′∗The matrix of H is<H>=[
E 0 +H′ 11 H′ 12
H′ 21 E 0 +H′ 22
]
∣
∣
∣
∣
E 0 +H′ 11 −EH′ 12
H′ 21 E 0 +H 22 ′ −E
∣
∣
∣
∣=^0
E 1 =^1 / 2
(
2 E 0 +H 11 ′ +H 22 ′
)
+^1 / 2
[(
H 11 ′ −H 22 ′
) 2
+ 4
∣
∣H′
12∣
∣^2
] 1 / 2
E 2 =^1 / 2
(
2 E 0 +H 11 ′ +H 22 ′
)
−^1 / 2
[(
H 11 ′ −H 22 ′
) 2
+ 4
∣
∣H′
12∣
∣^2
] 1 / 2
These are the energy levels of a two state system with HamiltonianH=
H 0 +H′. The perturbation theory requires finding the eigen values ofH′and
adding them to E 0 , which gives an exact result.3.100 The nuclear charge seen by the electron isZand not 2. This is because of
screening the effective charge is reduced.
The smallest value ofE(Z) =−e
2
2 a 0
( 27
4 Z−^2 Z
2 )must be determined
which is done by setting