8 1 Mathematical Physics
Laplace transforms:
Definition:
A Laplace transform of the functionF(t)is
∫∞
0
F(t)e−stdt=f(s) (1.55)
The functionf(s) is the Laplace transform ofF(t). Symbolically,L{F(t)}=
f(s) andF(t)=L−^1 {f(s)}is the inverse Laplace transform off(s).L−^1 is called
the inverse Laplace operator.
Table of Laplace transforms:
F(t) f(s)
aF 1 (t)+bF 2 (t) af 1 (s)+bf 2 (s)
aF(at) f(s/a)
eatF(t) f(s−a)
F(t−a)t>a
0 t<a e
−asf(s)
1
1
s
t
1
s^2
tn−^1
(n−1)!
1
sn
n= 1 , 2 , 3 ,...
eat
1
s−a
sinat
a
1
s^2 +a^2
cosat
s
s^2 +a^2
sinhat
a
1
s^2 −a^2
coshat
s
s^2 −a^2
Calculus of variation
The calculus of variation is concerned with the problem of finding a functiony(x)
such that a definite integral, taken over a function shall be a maximum or minimum.
Let it be desired to find that functiony(x) which will cause the integral
I=
∫x 2
x 1
F(x,y,y′)dx (1.56)