236 3 Quantum Mechanics – II
σL(45◦)= 4 |f(90◦)|CM.
Thus quantum mechanics explains the experimental result
3.106σ=
(
4 π
k^2
)∑
l= 0
(2l+1) sin^2 δl (1)
By problem
sinδl=
(iak)l
√
(2l+1)l!
(2)
Therefore,
sin^2 δl=
(−a^2 k^2 )l
(2l+1)l!
(3)
Using (3) in (1)
σ=
(
4 π
k^2
)∑
l= 0
(−a^2 k^2 )l
l!
Summing over infinite number of terms for the summation and writing
k^2 =
2 mE
^2
,
σ=
(
2 π^2
mE
)
exp(−a^2 k^2 )
=
2 π^2
mE
exp
(
−
2 mEa^2
^2
)
3.107 Letbbe the impact parameter. In thec-system
bPcm=l=
where we have setl=1forthep-wave scattering
ECM=
PCM^2
2 μ =
PCM^2
M =
(^2) /Mb^2 (Since the reduced massμ=M/2, where
Mis the mass of neutron or proton)
ELab= 2 ECM=
2 ^2
Mb^2
=
2 ^2 c^2
Mc^2 b^2
Insertingc = 197 .3MeV.fm,Mc^2 =940 MeV andb =2 fm, we find
ELab= 20 .6 MeV. Thus up to 20 MeV Lab energy,s-waves (l=0) alone
are important
3.108 Onlys-waves (l = 0) are expected to be involved as the scattering is
isotropic.
σ=
4 πsin^2 δ 0
k^2
Nowk^2 ^2 =p^2 = 2 mE
sin^2 δ 0 =^24 mEπ 2 σ=^2 mc
(^2) Eσ
4 π^2 c^2
Insertingmc^2 =940 MeV;E= 1 .0MeV,
σ= 0. 1 b= 10 −^25 cm^2 =10 fm^2 ,c= 197 .3MeV−fm
sin^2 δ 0 = 0. 03845
δ 0 =± 11. 3 ◦