3.3 Solutions 243
and minima are smeared out, just as in the case of optical diffraction from a
diffuse boundary of objects characterized by a slow varying refractive index.
3.117 f(θ)=−(2μ/q^2 )
∫∞
0 V(r)sin(qr)rdr
Integrate by parts
∫∞
0
V(r)sin(qr)rdr=V(r)
[
1
q^2
sin qr−
r
q
cos qr
]∞
0
−
∫∞
0
dV
dr
(
1
q^2
sinqr−
r
q
cosqr
)
dr
The first term on the right hand side vanishes at both limits becauseV(∞)=
0, Therefore:
∫∞
0
V(r)sin(qr)rdr=−
1
q^2
∫∞
0
dV
dr
sinqrdr+
1
q
∫∞
0
dV
dr
rcosqrdr
Evaluate the second integral by parts
1
q
∫∞
0
dV
dr
rcos(qr)dr=
1
q
[
dV
dr
(
r
q
sinqr+
cosqr
q^2
)]∞
0
−
1
q
∫∞
0
(
r
q
sinqr+
cosqr
q^2
)
d^2 V
dr^2
dr
Now the term
(
1
q^2
)
r
(dV
dr
)
sinqr
∣
∣∞
0 vanishes at both the limits because it is
expected that (dV/dr)r=∞=0.
Integrating by parts again
(
1
q^3
)∫
cosqr
d^2 V
dr^2
dr=
(
1
q^3
)
cosqr
dV
dr
∣
∣
∣
∣
∞
0
+
(
1
q^2
)∫∞
0
(
dV
dr
)
sinqrdr
(
1
q
)∫∞
0
(
dV
dr
)
rcosqrdr=
(
1
q^3
)(
dV
dr
)
cosqr
∣
∣
∣
∣
∞
0
−
(
1
q^2
)∫∞
0
(
d^2 V
dr^2
)
rsinqrdr−
(
1
q^3
)(
dV
dr
)
cosqr
∣∣
∣
∣
∞
0
−
(
1
q^2
)∫∞
0
(
dV
dr
)
sinqrdr.
The first and third terms on the right hand side get cancelled
∫∞
0
V(r)sin(qr)rdr=−
(
1
q^2
)∫ (
d^2 V
dr^2
+
2
r
dV
dr
)
sin(qr)rdr.
Now for spherically symmetric potential
∇^2 V=
d^2 V
dr^2
+
(
2
r
)
dV
dr
.
Furthermore by Poisson’s equation: