1000 Solved Problems in Modern Physics

(Grace) #1

3.3 Solutions 243


and minima are smeared out, just as in the case of optical diffraction from a
diffuse boundary of objects characterized by a slow varying refractive index.
3.117 f(θ)=−(2μ/q^2 )


∫∞

0 V(r)sin(qr)rdr
Integrate by parts
∫∞

0

V(r)sin(qr)rdr=V(r)

[

1

q^2

sin qr−

r
q

cos qr

]∞

0


∫∞

0

dV
dr

(

1

q^2

sinqr−

r
q

cosqr

)

dr

The first term on the right hand side vanishes at both limits becauseV(∞)=
0, Therefore:
∫∞

0

V(r)sin(qr)rdr=−

1

q^2

∫∞

0

dV
dr

sinqrdr+

1

q

∫∞

0

dV
dr

rcosqrdr

Evaluate the second integral by parts
1
q

∫∞

0

dV
dr

rcos(qr)dr=

1

q

[

dV
dr

(

r
q

sinqr+

cosqr
q^2

)]∞

0


1

q

∫∞

0

(

r
q

sinqr+

cosqr
q^2

)

d^2 V
dr^2

dr

Now the term

(

1
q^2

)

r

(dV
dr

)

sinqr


∣∞

0 vanishes at both the limits because it is
expected that (dV/dr)r=∞=0.
Integrating by parts again
(
1
q^3

)∫

cosqr

d^2 V
dr^2

dr=

(

1

q^3

)

cosqr

dV
dr






0

+

(

1

q^2

)∫∞

0

(

dV
dr

)

sinqrdr
(
1
q

)∫∞

0

(

dV
dr

)

rcosqrdr=

(

1

q^3

)(

dV
dr

)

cosqr






0


(

1

q^2

)∫∞

0

(

d^2 V
dr^2

)

rsinqrdr−

(

1

q^3

)(

dV
dr

)

cosqr

∣∣




0


(

1

q^2

)∫∞

0

(

dV
dr

)

sinqrdr.

The first and third terms on the right hand side get cancelled
∫∞

0

V(r)sin(qr)rdr=−

(

1

q^2

)∫ (

d^2 V
dr^2

+

2

r

dV
dr

)

sin(qr)rdr.

Now for spherically symmetric potential

∇^2 V=

d^2 V
dr^2

+

(

2

r

)

dV
dr

.

Furthermore by Poisson’s equation:
Free download pdf