3.3 Solutions 245
σ(θ)=
1
4
(
z 1 z 2 e^2
μv^2
) 2
1
sin^4
(θ
2
) (Rutherford scattering formula)
3.119 By Problem 3.116
F(q^2 )=
3
q^2 R^2
(
sinqR
qR
−cosqR
)
(1)
R=roA^1 /^3 = 1. 3 ×(64)^1 /^3 = 5 .2fm
q= 2 posin(θ/2)
qR= 2 cpoRsin(θ/2)/c= 2 × 300 ×
5. 2 ×sin 6◦
197. 3
= 1 .653 radians (2)
sinqR= 0. 9966 ,cosqR=− 0. 0819 (3)
Inserting (2) and (3) in (1), we findF(q)= 0. 75 ,F^2 ≈ 0 .57. Thus Mott’s
scattering is reduced by 57%.
3.120 F(q^2 )= 1 −q
2
6 ^2 <r
(^2) >+···
q= 2 posin(θ/2)= 2 × 200 ×(sin 7◦)MeV/c= 48 .75 MeV/c
<r^2 >=
6 ^2
q^2
[1−F(q^2 )]
= 6 ×
(197.3)^2
(48.75)^2
(1− 0 .6) fm^2
= 39. 3
∴Root mean square radius= 6 .27 fm
3.121 F(q)=(4π/q)
∫∞
0
ρ(r)sin(qr)rdr
=(4π/π^3 /^2 b^3 q)
∫∞
0
e−r
(^2) /b 2
sin(qr)rdr
=(− 4 /π^1 /^2 b^3 q)
∂
∂q
∫∞
0
e−r
(^2) /b 2
cos(qr)dr
=(− 4 /π^1 /^2 b^3 q)
∂
∂q
[
1
2
(πb^2 )^1 /^2 e−b
(^2) q (^2) / 4
]
F(q)=exp(−b^2 q^2 /4)
<r^2 >=
∫∞
0 r
(^2) ρ(r)4πr (^2) dr
∫
ρ(r)4πr^2 dr
=
∫∞
0 r
(^4) er^2 /b^2 dr
∫∞
0 r
(^2) e−r^2 /b^2 dr
where we have putρ(r)=(1/π^3 /^2 b^3 )e−r
(^2) /b 2
dr
With the change of variabler^2 /b^2 =x, we get
<r^2 >=
b^2
∫∞
0 x
3 / (^2) e−xdx
∫∞
0 x
1 / (^2) e−xdx =
Γ
( 5
2
)
b^2
Γ
( 3
2
) =
3 b^2
2