246 3 Quantum Mechanics – II
3.122 f(θ)=−
( μ
2 π^2
)∫
V(r)eiqrd^3 r
=−
( μ
2 π^2
)∫∞
0
V(r)r^2 dr
∫+ 1
− 1
eiqrcosθd(cosθ)
∫ 2 π
0
dφ
=−
( μ
2 π^2
)∫
V(r)r^2
[
(eiqr−e−iqr)
iqr
]
2 πdr
=−
(
2 μ
q^2
)∫∞
0
V(r)rsin(qr)dr
3.123 A=
∫∞
0
sin(qr/)
(qr/) V(r)4πr
(^2) dr
SubstituteV(r)∼e
−r/R
r
whereR=/mc
A∼
∫∞
0
e−r/R
sin(qr/)
q
dr
Put 1/R=aandq/=b
A∼
∫∞
0
e−ar
sin(br)
b
dr
=
1
b
[
b
a^2 +b^2
]
=
1
a^2 +b^2
=
1
1
R^2 +
q^2
^2
∼
1
^2
R^2 +q
2 =
1
q^2 +m^2 c^2