260 4 Thermodynamics and Statistical Physics
E= 3 NkT/ 2 (10)
Combining (8), (9) and (10)
α=
m
2 kT
(11)
and A=N(α/π)^3 /^2 =N(m/ 2 πkT)^3 /^2 (12)
Using (11) and (12) in (5)
N(ν)dν= 4 πN(m/ 2 πkT)^3 /^2 ν^2 exp(−mν^2 / 2 kT)dν
4.2N(ν)dν=^4 πN(m/^2 πkT)^3 /^2 ν^2 exp(−mν^2 /^2 kT)dν (1)
PutE=^12 mν^2 ,dE=mνdν (2)
Use (2) in (1) and simplify to obtain
N(E)dE=
2 πNE^1 /^2
(πkT)^3 /^2
exp
(
−
E
kT
)
dE
4.3 The average speed
<ν>=
∫∞
0 νN(ν)dν
N
= 4 π
( m
2 πkT
) 3 / 2 ∫∞
0
ν^3 exp(−mν^2 / 2 kT)dν (1)
where we have used the Maxwellian distribution
Putα=
m
2 kT
(2)
so that
∫∞
0
ν^3 e−αν
2
dν=
1
2 α^2
(3)
Combining (1), (2) and (3)
<ν>=
(
8 kT
πm
) 1 / 2
=
√
8 RT
M
(4)
wheremis the mass of the molecule,Mis the molecular weight andRthe gas
constant.
4.4<ν^2 >=
∫∞
0 ν
(^2) N(ν)dν
N
= 4 π
( m
2 πkT
) 3 / 2 ∫∞
0
ν^4 exp(−mν^2 / 2 kT)dν
withα=
m
2 kT
andx=αν^2 ;dx= 2 ανdν
The integral,I=
∫∞
0
ν^4 e−αν
2
dν=
1
2 α^5 /^2
∫∞
0
x^3 /^2 e−xdx=
3
√
π
8 α^5 /^2
Therefore,<ν^2 >= 4 π
( m
2 πkT
) 3 / 2 3 √π
8
(m
2 kT
) 5 / 2 =
3 kT
m
<ν^2 >^1 /^2 =(3kT/m)^1 /^2