4.3 Solutions 261
4.5 (a)νpis found by maximizing the Maxwellian distribution.
d
dν
[ν^2 exp(−mν^2 / 2 kT)]= 0
exp(−mν^2 /kT)[2ν−mν^3 /kT]= 0
whenceν=νp=(2kT/m)^1 /^2
(b)νp:<ν>:<ν^2 >^1 /^2 :: (2kT/m)^1 /^2 :(8kT/πm)^1 /^2 :(3kT/m)^1 /^2
=
√
2:
√
8 /π:
√
3
4.6 <ν^2 >^1 /^2 =
(
3 kT
m
) 1 / 2
=
(
3 × 1. 38 × 10 −^23 × 273
1. 67 × 10 −^27
) 1 / 2
= 2 ,601 m/s at N.T.P
<ν^2 >^1 /^2 =
(
3 × 1. 38 × 10 −^23 × 400
1. 67 × 10 −^27
) 1 / 2
= 3 ,149 m/s at 127◦C.
4.7<ν^2 >^1 /^2 =
(
3 p
ρ
) 1 / 2
=
(
3 ×(300/760)× 1. 013 × 105
0. 3
) 1 / 2
=632 m/s
4.8<
1
ν
>=
1
N
∫∞
0
1
ν
N(ν)dν
=
1
N
∫∞
0
1
ν
. 4 πN
( m
2 πkT
) 3 / 2
v^2 exp(−mν^2 / 2 kT)dν
Setmν^2 / 2 kT=x;vdν=kTdx/m
<
1
ν
>=(2m/πkT)^1 /^2
∫∞
0
exp(−x)dx=(2m/πkT)^1 /^2
4.9 N(ν)dν= 4 πN(m/ 2 πkT)^3 /^2 ν^2 exp(−mv^2 / 2 kT)dν (1)
νp=(2kT/m)^1 /^2 (2)
Letν/νp=α;dν=νpdα (3)
Use (2) and (3) in (1)
N(α)dα=
4 N
√
π
α^2 exp(−α^2 )dα
4.10 Fraction
f=
N(ν)dv
N
= 4 π
[ m
2 πkT
] 3 / 2
ν^2 exp(−mν^2 / 2 kT)dν
ν=
199 + 201
2
=200 m/s
dν= 201 − 199 =2m/s