36 1 Mathematical Physics
+
∫ 4
0
(
y^2
8
+y
)
ydy
4
+
(
y^2
8
−y
)
dy (alongy^2 = 8 x)
=+
16
3
1.8 (a) It is sufficient to show that CurlF= 0
∇×F=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
ijk
∂
∂x
∂
∂y
∂
∂z
2 xy+z^2 x^22 xz
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
=ˆi. 0 −ˆj(2z− 2 z)+kˆ(2x− 2 x)= 0
(b) dΦ=F.dr=((2xy+z^2 )ˆi+x^2 ˆj+ 2 xzkˆ)).(ˆidx+ˆjdy+kˆdz)
=(2xy+z^2 )dx+x^2 dy+ 2 xzdz
=(2xydx+x^2 dy)+(z^2 dx+ 2 xzdz)
=d(x^2 y)+d(z^2 x)=d(x^2 y+xz^2 )
ThereforeΦ=x^2 y+xz^2 +constant
(c) Work done=Φ 2 −Φ 1 = 5. 0
1.9 LetU=x+y;V=x−y
∂U
∂x
=1;
∂V
∂y
=− 1
The curvesy=x^2 andy^2 = 8 xintersect at (0, 0) and (2, 4).
∫∫(
∂U
∂x
−
∂V
∂x
)
dxdy=
∫∫
S
(1−(−1))dxdy= 2
∫ 2
x= 0
∫ 2 √ 2 x
y=x^2
dxdy
= 2
∫ 2
0
[∫ 2 √ 2 x
x^2
dy
]
dx= 2
∫ 2
0
(2
√
2
√
x−x^2 )dx= 2
[
4
√
2
3
x^3 /^2 −
x^3
3
] 2
0
=
16
3
This is in agreement with the value obtained in Problem 1.7 for the line inte-
gral.
1.10 Use the divergence theorem
∫∫
A.ds=
∫∫∫
∇.Adν
But∇.A=
∂
∂x
x^3 +
∂
∂y
y^3 +
∂
∂z
z^3
= 3 x^2 + 3 y^2 + 3 z^2 =3(x^2 +y^2 +z^2 )= 3 R^2
∫∫
A.ds=
∫∫∫
3 R^2 dν=
∫
(3R^2 )(4πR^2 dR)
= 12 π
∫
R^4 dR=
12
5
πR^5
1.11
∫
c
A.dr=
∫
(2yˆi− 3 xˆj+zkˆ).(dxiˆ+dyˆj+dzkˆ)
=
∫
(2ydx− 3 xdy+zdz)