1000 Solved Problems in Modern Physics

(Grace) #1

1.3 Solutions 37


Putx=Rcosθ,dx=−Rsinθdθ,y=Rsinθ,dy=Rcosθ,z= 0 , 0 <
θ<∫ 2 π
A.dr=− 2 R^2


sin^2 θdθ−R^2


cos^2 θdθ
=− 2 πR^2 −πR^2 =− 3 πR^2

1.12 (a)∇×(∇Φ)=

∣ ∣ ∣ ∣ ∣ ∣ ∣

ijk

∂x


∂y


∂z
∂Φ
∂x

∂Φ
∂y

∂Φ
∂z

∣ ∣ ∣ ∣ ∣ ∣ ∣

=i

(

∂^2 Φ

∂y∂z


∂^2 Φ

∂z∂y

)

−j

(

∂^2 Φ

∂x∂z


∂^2 Φ

∂z∂x

)

+k

(

∂^2 Φ

∂x∂y


∂^2 Φ

∂y∂x

)

= 0

because the order of differentiation is immaterial and terms in brackets
cancel in pairs.
(b) To show∇.(∇×V)= 0
(
ˆi∂
∂x

+ˆj


∂y

+kˆ


∂z

)

.

∣ ∣ ∣ ∣ ∣ ∣

ijk

∂x


∂y


∂z
VxVyVz

∣ ∣ ∣ ∣ ∣ ∣ =

(

ˆi∂
∂x

+ˆj


∂y

+kˆ


∂z

)

·

[

ˆi






∂y


∂z
VyVz




∣−

ˆj






∂x


∂z
VxVz




∣+







∂x


∂y
VxVy





]

=


∂x






∂y


∂z
VyVz




∣−


∂y






∂x


∂z
VxVz




∣+


∂z






∂x


∂y
VxVy





=

∣ ∣ ∣ ∣ ∣ ∣


∂x


∂y


∂z

∂x


∂y


∂z
VxVyVz

∣ ∣ ∣ ∣ ∣ ∣

= 0

The value of the determinant is zero because two rows are identical.

1.13Φ=x^2 y− 2 xz^3


(a)∇Φ=

(

iˆ∂
∂x

+ˆj


∂y

+kˆ


∂z

)

(x^2 y− 2 xz^3 )

=2(xy−z^3 )ˆi+x^2 ˆj+ 6 xz^2 kˆ

(b)∇^2 Φ=

(

∂^2

∂x^2

+

∂^2

∂y^2

+

∂^2

∂z^2

)

(x^2 y− 2 xz^3 )

= 2 y− 12 xz

1.14 (a)∇(x^2 y+xz)=

(

ˆi∂
∂x

+ˆj


∂y

+kˆ


∂z

)

(x^2 y+xz)

=(2xy+z)ˆi+x^2 ˆj+xˆk
=−ˆi+ˆj+kˆ
Free download pdf