58 1 Mathematical Physics
1.58
d^2 y
dx^2
+m^2 y=cosbx (1)
Replacing the right-hand member by zero,
d^2 y
dx^2
+m^2 y= 0. (2)
Solving, we get the complimentary function
y=C 1 sinmx+C 2 cosmx=U. (3)
Differentiating (1) twice, we get
d^4 y
dx^4
+m^2
d^2 y
dx^2
=−b^2 cosbx. (4)
Multiply (1) byb^2 and adding the result to (4) gives
d^4 y
dx^4
+(m^2 +b^2 )
d^2 y
dx^2
+b^2 m^2 y= 0. (5)
The complete solution of (5) is
y=C 1 sinmx+C 2 cosmx+C 3 sinbx+C 4 cosbx
ory=U+C 3 sinbx+C 4 cosbx=U+V
We shall now determineC 3 andC 4 so thatC 3 sinbx+C 4 cosbxshall be a
particular solutionVof (1)
Substituting
y=C 3 sinbx+C 4 cosbx,
dy
dx
=C 3 bcosbx−C 4 bsinbx,
d^2 y
dx^2 =−C^3 b
(^2) sin bx−C 4 b (^2) cos bx in (1), we get
C 4 (m^2 −b^2 ) cosbx+C 3 (m^2 −b^2 )sinbx=cosbx
Equating the coefficients of like terms in this identity we get
C 4 (m^2 −b^2 )= 1 →C 4 =
1
m^2 −b^2
C 3 (m^2 −b^2 )= 0 →C 3 = 0
Hence a particular solution of (1) is
V=
cosbx
m^2 −b^2
and the complete solution is
y= 0 +V=C 1 sinmx+C 2 cosmx+
cosbx
m^2 −b^2
1.59
d^2 y
dx^2
− 5
dy
dx
+ 6 y=x (1)
Replace the right-hand member by zero to form the auxiliary equation
D^2 − 5 D+ 6 =0(2)
The roots areD=2 and 3. The solution is
y=C 1 e^2 x+C 2 e^3 x=0(3)