1.3 Solutions 63
Differentiating (1) twiced^4 y
dx^4+
d^3 y
dx^3− 2
d^2 y
dx^2=8 cosh 2x (3)Multiply (1) by (4) and subtract the resulting equation from (3)d^4 y
dx^4+
d^3 y
dx^3−
6d^2 y
dx^2−
4dy
dx+ 8 y=0(4)D^4 +D^3 − 6 D^2 − 4 D+ 8 = 0
(D−1)(D−2)(D+2)^2 = 0
D= 1 , 2 ,− 2 ,− 2The complete solution of (4) isy=C 1 ex+C 3 e^2 x+C 2 e−^2 x+C 4 xe−^2 x
=U+C 3 e^2 x+C 4 xe−^2 x
=U+V
V=C 3 e^2 x+C 4 xe−^2 x (5)Inserting (5) in (1), writing 2 cosh 2 x =e^2 x+e−^2 xand comparing the
coefficients ofe^2 xande−^2 x, we findC 3 =^14 andC 4 =−^13. Thus the complete
solution of (1) isy=C 1 ex+C 2 e−^2 x+1
4
e^2 x−1
3
xe−^2 x1.66
xdy
dx−y=x^2dy
dx−
y
x=xThe standard equation is
dy
dx+Py=Q∴P=−
1
x;Q=xyexp(∫
pdx)
=
[∫
Qexp(∫
pdx)]
dx+Cyexp(
−
∫
1
xdx)
=
[∫
xexp(
−
∫
1
xdx)]
+C
yexp(−lnx)=[∫
xexp(−lnx)]
+C
yx−^1 =∫
xx−^1 dx+Cy=x^2 +Cx