78 1 Mathematical Physics
(c)<x^2 >=∑
x^2e−mmx
x!=
∑
[x(x−1)+x]e−mmx
x!=∑∞
x= 0e−mmx
(x−2)!+
∑∞
x= 0 xe−mm
x
x!=e−m(
m^2 +m^3
1!+
m^4
2!+···
)
+m=m^2 e−mem+m=m^2 +mσ^2 =<(x−x ̄)^2 >=<x^2 >− 2 <x>x ̄+< ̄x>^2 =<x^2 >−m^2σ^2 =morσ=√
m(d)Pm− 1 =e−mmm−^1
(m−1)!=
e−mmm
(m−1)!m=
e−mmm
m!=PmThat is the probability for the occurrence of the event atx=m−1is
equal to that atx=m(e)Px− 1 =e−mmx−^1
(x−1)!=
e−mmx
x!x
m=
x
mPxPx+ 1 =e−mmx+^1
(x+1)!=
me−mmx
x!(x+1)=
m
x+ 1Px1.94 (a)(q+p)N=qN+NqN−^1 P+N(N−1)qN−^2
2!P^2
+···
N!
x!(N−x)!PxqN−x+···PN=
∑N
x= 0N!
x!(N−x)!PxqN−x=1(∵q+p=1)(b) We can use the moment generating functionMx(t) about the meanμ
which is given asMx(t)=Ee(x−μ)t=E
[
1 +(x−μ)t+(x−μ)^2t^2
2!+···
]
= 1 + 0 +μ 2t^2
2!+μ 3t^3
3!+···
So thatμnis the coefficient oftn
n!