Science - USA (2022-02-04)

(Antfer) #1
degradation in an anaerobic microbial community.
Environ. Sci. Process. Impacts 21 , 1915–1925 (2019).
doi:10.1039/C9EM00241C; pmid: 31454014


  1. J. W. Washington, J. E. Naile, T. M. Jenkins, D. G. Lynch,
    Characterizing fluorotelomer and polyfluoroalkyl substances
    in new and aged fluorotelomer-based polymers for
    degradation studies with GC/MS and LC/MS/MS.Environ.
    Sci. Technol. 48 , 5762–5769 (2014). doi:10.1021/
    es500373b; pmid: 24749955

  2. L. P. Wackett, S. L. Robinson, The ever-expanding limits of
    enzyme catalysis and biodegradation: Polyaromatic,
    polychlorinated, polyfluorinated, and polymeric compounds.
    Biochem. J. 477 , 2875–2891 (2020). doi:10.1042/
    BCJ20190720; pmid: 32797216

  3. C. Tebes-Stevens, J. M. Patel, W. J. Jones, E. J. Weber,
    Prediction of Hydrolysis Products of Organic Chemicals
    under Environmental pH Conditions.Environ. Sci. Technol. 51 ,
    5008 – 5016 (2017). doi:10.1021/acs.est.6b05412;
    pmid: 28430419

  4. A. W. Rose, H. E. Hawkes, J. S. Webb,Geochemistry in
    Mineral Exploration. (Academic, ed. 2, 1979).

  5. G. Friedlander, J. W. Kennedy, E. S. Macias, J. M. Miller,
    Nuclear and Radiochemistry(Wiley Interscience, ed. 3, 1981).

  6. K. Rankin, S. A. Mabury, T. M. Jenkins, J. W. Washington,
    A North American and global survey of perfluoroalkyl
    substances in surface soils: Distribution patterns and mode
    of occurrence.Chemosphere 161 , 333–341 (2016).
    doi:10.1016/j.chemosphere.2016.06.109; pmid: 27441993

  7. M. Shoeib, T. Harner, P. Vlahos, Perfluorinated chemicals in
    the arctic atmosphere.Environ. Sci. Technol. 40 , 7577– 7583
    (2006). doi:10.1021/es0618999; pmid: 17256497

  8. A. Gaworet al., Neutral polyfluoroalkyl substances in the
    global atmosphere.Environ. Sci. Process. Impacts 16 ,
    404 – 413 (2014). doi:10.1039/C3EM00499F;
    pmid: 24232015

  9. M. Shoeibet al., Survey of polyfluorinated chemicals (PFCs)
    in the atmosphere over the northeast Atlantic Ocean.
    Atmos. Environ. 44 , 2887–2893 (2010). doi:10.1016/
    j.atmosenv.2010.04.056

  10. A. Dreyer, I. Weinberg, C. Temme, R. Ebinghaus,
    Polyfluorinated compounds in the atmosphere of the Atlantic
    and Southern Oceans: Evidence for a global distribution.
    Environ. Sci. Technol. 43 , 6507–6514 (2009). doi:10.1021/
    es9010465; pmid: 19764209

  11. E. L. D’Ambroet al., Characterizing the air emissions,
    transport, and deposition of per- and polyfluoroalkyl
    substances from a fluoropolymer manufacturing facility.
    Environ. Sci. Technol. 55 , 862–870 (2021). doi:10.1021/
    acs.est.0c06580; pmid: 33395278

  12. A. Dreyer, T. Kirchgeorg, I. Weinberg, V. Matthias, Particle-
    size distribution of airborne poly- and perfluorinated alkyl
    substances.Chemosphere 129 , 142–149 (2015). doi:10.1016/
    j.chemosphere.2014.06.069; pmid: 25027782

  13. D. A. Elliset al., Atmospheric lifetime of fluorotelomer
    alcohols.Environ. Sci. Technol. 37 , 3816–3820 (2003).
    doi:10.1021/es034136j; pmid: 12967100

  14. J. J. MacInniset al., Fate and transport of perfluoroalkyl
    substances from snowpacks into a lake in the High Arctic of
    Canada.Environ. Sci. Technol. 53 , 10753–10762 (2019).
    doi:10.1021/acs.est.9b03372; pmid: 31412696

  15. J. W. Washington, K. Rankin, E. L. Libelo, D. G. Lynch,
    M. Cyterski, Determining global background soil PFAS loads
    and the fluorotelomer-based polymer degradation rates
    that can account for these loads.Sci. Total Environ. 651 ,
    2444 – 2449 (2019). doi:10.1016/j.scitotenv.2018.10.071;
    pmid: 30336434

  16. E. L. D’Ambroet al., Characterizing the air emissions,
    transport, and deposition of per- and polyfluoroalkyl
    substances from a fluoropolymer manufacturing facility.
    Environ. Sci. Technol. 55 , 862–870 (2021). doi:10.1021/
    acs.est.0c06580; pmid: 33395278

  17. J. E. Gallowayet al., Evidence of air dispersion: HFPO-DA
    and PFOA in Ohio and West Virginia surface water and soil
    near a fluoropolymer production facility.Environ. Sci. Technol.
    54 , 7175–7184 (2020). doi:10.1021/acs.est.9b07384;
    pmid: 32458687

  18. M. L. Brusseau, The influence of molecular structure on the
    adsorption of PFAS to fluid-fluid interfaces: Using QSPR to
    predict interfacial adsorption coefficients.Water Res. 152 ,
    148 – 158 (2019). doi:10.1016/j.watres.2018.12.057;
    pmid: 30665161

  19. US Department of Agriculture,“Soil taxonomy: A basic
    system of soil classification for making and interpreting soil


surveys (Agricultural Handbook No. 436, USDA, Soil
Conservation Service, 1975);https://www.nrcs.usda.gov/
wps/portal/nrcs/main/soils/survey/class/taxonomy/.


  1. X. Zhu, X. Song, J. Schwarzbauer, First insights into the
    formation and long-term dynamic behaviors of
    nonextractable perfluorooctanesulfonate and its alternative
    6:2 chlorinated polyfluorinated ether sulfonate residues in a
    silty clay soil.Sci. Total Environ. 761 , 143230 (2021).
    doi:10.1016/j.scitotenv.2020.143230; pmid: 33158517

  2. F. Xiao, B. Jin, S. A. Golovko, M. Y. Golovko, B. Xing, Sorption
    and desorption mechanisms of cationic and zwitterionic
    per- and polyfluoroalkyl substances in natural soils:
    Thermodynamics and hysteresis.Environ. Sci. Technol. 53 ,
    11818 – 11827 (2019). doi:10.1021/acs.est.9b05379;
    pmid: 31553179

  3. T. M. H. Nguyenet al., Influences of chemical properties, soil
    properties, and solution ph on soil-water partitioning
    coefficients of per- and polyfluoroalkyl substances (PFASs).
    Environ. Sci. Technol. 54 , 15883–15892 (2020). doi:10.1021/
    acs.est.0c05705; pmid: 33249833

  4. M. E. McGuireet al., Evidence of remediation-induced
    alteration of subsurface poly- and perfluoroalkyl substance
    distribution at a former firefighter training area.Environ. Sci.
    Technol. 48 , 6644–6652 (2014). doi:10.1021/es5006187;
    pmid: 24866261

  5. J. W. Washington, H. Yoo, J. J. Ellington, T. M. Jenkins,
    E. L. Libelo, Concentrations, distribution, and persistence of
    perfluoroalkylates in sludge-applied soils near Decatur,
    Alabama, USA.Environ. Sci. Technol. 44 , 8390–8396 (2010).
    doi:10.1021/es1003846; pmid: 20949951

  6. A. Borthakuret al., Release of soil colloids during flow
    interruption increases the pore-water PFAS concentration in
    saturated soil.Environ. Pollut. 286 , 117297 (2021).
    doi:10.1016/j.envpol.2021.117297; pmid: 33971474

  7. A. C. Blaineet al., Perfluoroalkyl acid distribution in various
    plant compartments of edible crops grown in biosolids-
    amended soils.Environ. Sci. Technol. 48 , 7858–7865 (2014).
    doi:10.1021/es500016s; pmid: 24918303

  8. A. C. Blaineet al., Perfluoroalkyl acid uptake in lettuce
    (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated
    with reclaimed water.Environ. Sci. Technol. 48 , 14361– 14368
    (2014). doi:10.1021/es504150h; pmid: 25386873

  9. A. C. Blaineet al., Uptake of perfluoroalkyl acids into edible
    crops via land applied biosolids: Field and greenhouse
    studies.Environ. Sci. Technol. 47 , 14062–14069 (2013).
    doi:10.1021/es403094q; pmid: 24206563

  10. L. Lesmeisteret al., Extending the knowledge about PFAS
    bioaccumulation factors for agricultural plants - A review.
    Sci. Total Environ. 766 , 142640 (2021). doi:10.1016/
    j.scitotenv.2020.142640; pmid: 33077210

  11. C. Xuet al., Occurrence, source apportionment, plant
    bioaccumulation and human exposure of legacy and
    emerging per- and polyfluoroalkyl substances in soil and
    plant leaves near a landfill in China.Sci. Total Environ. 776 ,
    145731 (2021). doi:10.1016/j.scitotenv.2021.145731;
    pmid: 33647664

  12. I. Navarroet al., Bioaccumulation of emerging organic
    compounds (perfluoroalkyl substances and halogenated
    flame retardants) by earthworm in biosolid amended soils.
    Environ. Res. 149 , 32–39 (2016). doi:10.1016/
    j.envres.2016.05.004; pmid: 27174781

  13. C. Eschauzier, K. J. Raat, P. J. Stuyfzand, P. De Voogt,
    Perfluorinated alkylated acids in groundwater and drinking
    water: Identification, origin and mobility.Sci. Total Environ.
    458 Ð 460 , 477–485 (2013). doi:10.1016/
    j.scitotenv.2013.04.066; pmid: 23692852

  14. P. J. Lasier, J. W. Washington, S. M. Hassan, T. M. Jenkins,
    Perfluorinated chemicals in surface waters and sediments
    from northwest Georgia, USA, and their bioaccumulation in
    Lumbriculus variegatus.Environ. Toxicol. Chem. 30 ,
    2194 – 2201 (2011). doi:10.1002/etc.622; pmid: 21766321

  15. N. Pi, J. Z. Ng, B. C. Kelly, Uptake and elimination kinetics of
    perfluoroalkyl substances in submerged and free-floating
    aquatic macrophytes: Results of mesocosm experiments with
    Echinodorus horemanii and Eichhornia crassipes.Water Res.
    117 , 167–174 (2017). doi:10.1016/j.watres.2017.04.003;
    pmid: 28391121

  16. M. Bonatoet al., PFAS environmental pollution and
    antioxidant responses: An overview of the impact on human
    field.Int. J. Res. Public Health 17 , 8020 (2020).
    pmid: 33143342

  17. E. M. Sunderlandet al., A review of the pathways of human
    exposure to poly- and perfluoroalkyl substances (PFASs)


and present understanding of health effects.J. Expo. Sci.
Environ. Epidemiol. 29 , 131–147 (2019). doi:10.1038/
s41370-018-0094-1; pmid: 30470793


  1. J. C. DeWitt, M. M. Peden-Adams, J. M. Keller, D. R. Germolec,
    Immunotoxicity of perfluorinated compounds: Recent
    developments.Toxicol. Pathol. 40 , 300–311 (2012).
    doi:10.1177/0192623311428473; pmid: 22109712

  2. H. K. Knutsenet al., Risk to human health related to the
    presence of perfluorooctane sulfonic acid and
    perfluorooctanoic acid in food.EFSA J. 16 , e05194 (2018).
    pmid: 32625773

  3. P. E. Goodrum, J. K. Anderson, A. L. Luz, G. K. Ansell,
    Application of a framework for grouping and mixtures
    toxicity assessment of PFAS: A closer examination of dose-
    additivity approaches.Toxicol. Sci. 179 , 262–278 (2021).
    doi:10.1093/toxsci/kfaa123; pmid: 32735321

  4. C. Dassuncaoet al., Temporal shifts in poly- and
    perfluoroalkyl substances (PFASs) in North Atlantic pilot
    whales indicate large contribution of atmospheric precursors.
    Environ. Sci. Technol. 51 , 4512–4521 (2017). doi:10.1021/
    acs.est.7b00293; pmid: 28350446

  5. E. S. Larson, J. M. Conder, J. A. Arblaster, Modeling avian
    exposures to perfluoroalkyl substances in aquatic habitats
    impacted by historical aqueous film forming foam releases.
    Chemosphere 201 , 335–341 (2018). doi:10.1016/
    j.chemosphere.2018.03.004; pmid: 29525662

  6. A. Kochet al., Characterization of an AFFF impacted
    freshwater environment using total fluorine, extractable
    organofluorine and suspect per- and polyfluoroalkyl
    substance screening analysis.Chemosphere 276 , 130179
    (2021). doi:10.1016/j.chemosphere.2021.130179;
    pmid: 33735649

  7. D. A. Mirandaet al., Bioaccumulation of per- and
    polyfluoroalkyl substances (PFASs) in a tropical estuarine
    food web.Sci. Total Environ. 754 , 142146 (2021).
    doi:10.1016/j.scitotenv.2020.142146; pmid: 33254889

  8. R. M. Janousek, J. Mayer, T. P. Knepper, Is the phase-out of
    long-chain PFASs measurable as fingerprint in a defined
    area? Comparison of global PFAS concentrations and a
    monitoring study performed in Hesse, Germany from 2014
    to 2018.Trends Analyt. Chem. 120 , 115393 (2019).
    doi:10.1016/j.trac.2019.01.017

  9. M. J. Benottiet al., A forensic approach for distinguishing
    PFAS materials.Environ. Forensics 21 , 319–333 (2020).
    doi:10.1080/15275922.2020.1771631

  10. D. Glaseret al., The impact of precursors on aquatic
    exposure assessment for PFAS: Insights from
    bioaccumulation modeling.Integr. Environ. Assess. Manag. 17 ,
    705 – 715 (2021). doi:10.1002/ieam.4414; pmid: 33739579

  11. A. O. De Silvaet al., PFAS exposure pathways for humans
    and wildlife: A synthesis of current knowledge and key gaps
    in understanding.Environ. Toxicol. Chem. 40 , 631– 657
    (2021). doi:10.1002/etc.4935; pmid: 33201517

  12. D. Muiret al., Levels and trends of poly- and perfluoroalkyl
    substances in the Arctic environment–An update.
    Emerg. Contam. 5 , 240–271 (2019). doi:10.1016/
    j.emcon.2019.06.002

  13. C. A. Ng, K. Hungerbühler, Bioaccumulation of perfluorinated
    alkyl acids: Observations and models.Environ. Sci. Technol.
    48 , 4637–4648 (2014). doi:10.1021/es404008g;
    pmid: 24762048

  14. C. Dassuncaoet al., Shifting global exposures to poly- and
    perfluoroalkyl substances (PFASs) evident in longitudinal
    birth cohorts from a seafood-consuming population.
    Environ. Sci. Technol. 52 , 3738–3747 (2018). doi:10.1021/
    acs.est.7b06044; pmid: 29516726

  15. J. L. Alesio, A. Slitt, G. D. Bothun, Critical new insights into
    the binding of poly- and perfluoroalkyl substances (PFAS) to
    albumin protein.Chemosphere 287 , 131979 (2022).
    doi:10.1016/j.chemosphere.2021.131979; pmid: 34450368

  16. Y. Chenet al., Occurrence, profiles, and ecotoxicity of
    poly- and perfluoroalkyl substances and their alternatives in
    global apex predators: A critical review.J. Environ. Sci.
    (China) 109 , 219–236 (2021). doi:10.1016/j.jes.2021.03.036;
    pmid: 34607670

  17. H. Yoo, J. W. Washington, T. M. Jenkins, J. J. Ellington,
    Quantitative determination of perfluorochemicals and
    fluorotelomer alcohols in plants from biosolid-amended
    fields using LC/MS/MS and GC/MS.Environ. Sci. Technol.
    45 , 7985–7990 (2011). doi:10.1021/es102972m;
    pmid: 21247105

  18. L. P. Burkhard, Evaluation of published bioconcentration
    factor (BCF) and bioaccumulation factor (BAF) data for per- and


Evichet al.,Science 375 , eabg9065 (2022) 4 February 2022 13 of 14


RESEARCH | REVIEW

Free download pdf