W9_parallel_resonance.eps

(C. Jardin) #1

Week 2: Continuous Charge and Gauss’s Law 75


The second integral is also easy enough, at least if you you remember how tointegrate by
parts: ∫


udv=uv−


vdu (80)

Our chore, then, is to identify auand advin the integral:
∫ 1


− 1

rcos(θ)d(cosθ)
(R^2 +r^2 − 2 rRcos(θ))^3 /^2 =

(

1

− 2 R

)∫ 1

− 1

− 2 rRcos(θ)d(cosθ)
(R^2 +r^2 − 2 rRcos(θ))^3 /^2 (81)

(where I’ve gone ahead and multiplied and divided by− 2 R, thinking ahead).


Let’s let:
u= cos(θ) (82)

and
ζ=R^2 +r^2 − 2 rRcos(θ) (83)


so that:


dv=

− 2 rR d(cosθ)
(R^2 +r^2 − 2 rRcos(θ))^3 /^2

=ζ−^3 /^2 dζ (84)

We integrate this to get:

v=


dv=− 2 ζ−^1 /^2 =

− 2

(R^2 +r^2 − 2 rRcos(θ))^1 /^2

(85)

Note that this isjust the first integralbefore we plugged in the limits!


So let’s dig into the algebra. This bit isn’t exactly trivial – be patient andtry to understand
each step.
(
1
− 2 R


)∫ 1

− 1

− 2 rR d(cosθ) cos(θ)
(R^2 +r^2 − 2 rRcos(θ))^3 /^2

=

(

1

− 2 R

){

−2 cos(θ)
(R^2 +r^2 − 2 rRcos(θ))^1 /^2

∣∣

∣∣

1

− 1


∫ 1

− 1

− 2 dcos(θ)
(R^2 +r^2 − 2 rRcos(θ))^1 /^2

}

=

(

1

− 2 R

){(

− 2

R−r


2

R+r

)


(

1

rR

)∫ 1

− 1

− 2 Rr dcos(θ)
(R^2 +r^2 − 2 rRcos(θ))^1 /^2

}

=

(

1

− 2 R

){(

− 4 R

R^2 −r^2

)


(

2

rR

)

(R^2 +r^2 − 2 rRcos(θ))^1 /^2 )

∣∣


1
− 1

}

=

(

1

− 2 R

){

− 4 R

R^2 −r^2


(

2

rR

)

[(R−r)−(R+r)]

}

=

(

1

− 2 R

){

− 4 R

R^2 −r^2

+

4

R

}

=

{

2

R^2 −r^2


2

R^2

}

(86)

Putting it all together we get:

Ez = 2πr^2 σke

{

2

R^2 −r^2


2

R^2 −r^2

+

2

R^2

}

= 2πr^2 σke

2

R^2

=

ke

(

4 πr^2 σ

)

R^2

=

keQ
R^2

(87)
Free download pdf