Computational Chemistry

(Steven Felgate) #1

  1. Orthogonalizing matrix
    As explained above, we (a) diagonalizeS, (b) calculateD"1/2, then (c) calculate
    the orthogonalizing matrixS"1/2:
    (a) DiagonalizeS



10 : 435

0 :435 1



¼

0 :707 0: 707

0 : 707 " 0 : 707



1 :435 0

00 : 565



0 :707 0: 707

0 : 707 " 0 : 707



PDP"^1

(4.112)

(b) CalculateD"1/2

D"^1 =^2 ¼^1 :^435

" 1 = (^20)
00 : 565 "^1 =^2




¼

0 :835 0

01 : 330



(4.113)

(c) Calculate the orthogonalizing matrixS"1/2

S"^1 =^2 ¼

0 :707 0: 707

0 : 707 " 0 : 707



0 :835 0

01 : 330



0 :707 0: 707

0 : 707 " 0 : 707



¼

1 : 083 " 0 : 248

" 0 :248 1: 083



PD"^1 =^2 P"^1

(4.114)


  1. Transformation of the original Fock matrixHtoH^0
    Using Eq.4.102:


H^0 ¼

1 : 083 " 0 : 248

" 0 :248 1: 083



" 13 : 6 " 14 : 5

" 14 : 5 " 24 : 6



1 : 083 " 0 : 248

" 0 :248 1: 083



¼

" 9 : 67 " 7 : 65

" 7 : 68 " 21 : 74



S"^1 =^2 HS"^1 =^2

(4.115)


  1. Diagonalization ofH^0
    From Eq.4.104(H^0 ¼C^0 «C^0 "^1 ), diagonalization ofH^0 gives an eigenvector
    matrixC^0 and the eigenvalue matrix«; the columns ofC^0 are the coefficients of
    the transformed, orthonormal basis functions:


H^0 ¼

" 9 : 67 " 7 : 65

" 7 : 68 " 21 : 74



¼

0 :436 0: 899

0 : 900 " 0 : 437



" 25 : 50

0 " 5 : 95



0 :436 0: 900

0 : 899 " 0 : 437



C^0 e C^0 "^1
(4.116)

162 4 Introduction to Quantum Mechanics in Computational Chemistry

Free download pdf