Gmay now be calculated. From Eqs. (5.106)–(5.108), using the above values of
Pand the integrals of Eq. (5.110), and recalling that integrals like (11j12) and
(21j11) are equal (Eq. (5.109)) we get:
G 11 ¼P 11 ð 11 j 11 Þ#1
2
ð 11 j 11 ÞþP 12 ð 11 j 12 Þ#1
2
ð 12 j 11 ÞþP 21 ð 11 j 21 Þ#1
2
ð 11 j 21 ÞþP 22 ð 11 j 22 Þ#1
2
ð 12 j 21 Þ¼ 0 : 1240 ð 0 : 3642 Þþ 0 : 4318 ð 0 : 1709 Þ
þ 0 : 4318 ð 0 : 1709 Þþ 1 : 5034 ð 0 : 4754 Þ¼ 0 : 9075ð 5 : 124 ÞG 12 ¼G 21 ¼P 11 ð 12 j 11 Þ#1
2
ð 11 j 12 ÞþP 12 ð 12 j 12 Þ#1
2
ð 12 j 12 ÞþP 21 ð 12 j 21 Þ#1
2
ð 11 j 22 ÞþP 22 ð 12 j 22 Þ#1
2
ð 12 j 22 Þ¼ 0 : 1240 ð 0 : 1709 Þþ 0 : 4318 ð 0 : 1096 Þ
þ 0 : 4318 ð# 0 : 0733 Þþ 1 : 5034 ð 0 : 2184 Þ¼ 0 : 3652ð 5 : 125 ÞG 22 ¼P 11 ð 22 j 11 Þ#1
2
ð 21 j 12 ÞþP 12 ð 22 j 12 Þ#1
2
ð 22 j 12 ÞþP 21 ð 22 j 21 Þ#1
2
ð 21 j 22 ÞþP 22 ð 22 j 22 Þ#1
2
ð 22 j 22 Þ¼ 0 : 1240 ð 0 : 4754 Þþ 0 : 4318 ð 0 : 2184 Þ
þ 0 : 4318 ð 0 : 2184 Þþ 1 : 5034 ð 0 : 4964 Þ¼ 0 : 9938ð 5 : 126 ÞFrom the G values based on the initial guessc’s the initial-guess electron repulsion
matrix is
G 0 ¼
0 :9075 0: 3652
0 :3652 0: 9938
ð 5 : 127 ÞThe initial-guess Fock matrix is (Eqs (5.116), (5.120) and (5.126))
F 0 ¼TþVðHÞþVðHeÞþG 0 ¼HcoreþG 0¼# 1 : 6606 # 1 : 3160
# 1 : 3160 # 2 : 3030
þ0 :9095 0: 3652
0 :3652 0: 9938
¼
# 0 : 7511 # 0 : 9508
# 0 : 9508 # 1 : 3092
ð 5 : 128 ÞThe zero subscripts in Eqs. (5.127) and (5.128) emphasize that the initial-guessc’s,
with no iterative refinement, were used to calculateG; in the subsequent iterations
of the SCF procedureHcorewill remain constant whileGwill be refined as thec’s,
5.2 The Basic Principles of the ab initio Method 223