Step 10– TransformingF 1 toF^01 (cf.Step 5)F^01 ¼
1 : 1163 # 0 : 3003
# 0 :3003 1: 1163
# 0 : 7982 # 0 : 9791
# 0 : 9791 # 1 : 3448
1 : 1163 # 0 : 3003
# 0 :3003 1: 1163
S#^1 =^2 F 1 S#^1 =^2
¼
# 0 : 4595 # 0 : 5900
# 0 : 5900 # 1 : 0913
F^01
ð 5 : 142 ÞStep 11– DiagonalizingF^01 to obtain the energy levelseand a coefficient matrix
C^0 (cf. Step 6)
F^01 ¼
0 :5138 0: 8579
0 : 8579 # 0 : 5138
# 1 :4447 0: 0000
0 : 0000 # 0 : 1062
0 :5138 0: 8579
0 : 8579 # 0 : 5138
C^02 e 2 C^02 #^1
ð 5 : 143 ÞThe energy levels from this second SCF cycle are#1.4447 h and#0.1062 h. To
get the MO coefficients corresponding to these MO energy levels in terms of the
original basis functionsf 1 andf 2 we now transformC^02 toC 2.
Step 12– TransformingC^02 toC 2 (cf. Step 7)
C 2 ¼
1 : 1163 # 0 : 3003
# 0 :3003 1: 1163
0 :5138 0: 8579
0 : 8579 # 0 : 5138
¼
0 :3159 1: 1120
0 : 8034 # 0 : 8319
S#^1 =^2 C^02 C 2
ð 5 : 144 ÞThis completes the second SCF cycle. We now have the MO energy levels and
basis function coefficients:
From Eq.5.143:
e 1 ¼# 1 :4447 and e 2 ¼# 0 : 1062 ð 5 : 145 ÞFrom Eq.5.144:c 1 ¼ 0 : 3159 f 1 þ 0 : 8034 f 2 and c 2 ¼ 1 : 1120 f 1 # 0 : 8319 f 2 ð 5 : 146 ÞStep 13– Comparing the density matrix from the latestc’s with the previous
density matrix to see if the SCF procedure has converged
The density matrix elements based on thec’s ofC 2 are
P 11 ¼ 2 c 11 c 11 ¼ 2 ð 0 : 3159 Þ 0 : 3159 ¼ 0 : 1996
P 12 ¼ 2 c 11 c 21 ¼ 2 ð 0 : 3159 Þ 0 : 8034 ¼ 0 : 5076
P 22 ¼ 2 c 21 c 21 ¼ 2 ð 0 : 8034 Þ 0 : 8034 ¼ 1 : 29095.2 The Basic Principles of the ab initio Method 227