- Inagaki S, Ishitani Y, Kakefu T (1994) J Am Chem Soc 116:5954
- (a) Lewars E (1998) J Mol Struct (Theochem) 423:173. (b) Lewars E (2000) J Mol Struct
(Theochem) 507:165. (c) Kenny JP, Krueger KM, Rienstra-Kiracofe JC, Schaefer HF (2001)
J Phys Chem A 105:7745 - The experimental geometries of Me 2 SO and NSF are taken from Hehre WJ, Radom L,
Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York,
Table 6.14. - Wiest O, Montiel DC, Houk KN (1997) J Phys Chem A 101:8378, and references therein
- Van Alsenoy C, Yu C-H, Peeters A, Martin JML, Sch€afer L (1998) J Phys Chem A 102:2246
- See e.g. (a) Hua W, Fang T, Li W, Yu J-G, Li S (2008) J Phys Chem A 112:10864. (b) Exner
TE, Myers PG (2003) J Comp Chem 24:1980 - Clary DC (2006) Science 314:265
- Basis sets without polarization functions evidently make lone-pair atoms like tricoordinate N
and tricoordinate Oþtoo flat: Pye CC, Xidos JD, Poirer RA, Burnell DJ (1997) J Phys Chem
A 101:3371. Other problems with the 3–21G()basis are that cation–metal distances tend to
be too short (e.g. Rudolph W, Brooker MH, Pye CC (1995) J Phys Chem 99:3793) and that
adsorption energies of organics on aluminosilicates are overestimated, and charge separation
is exaggerated (private communication from G. Sastre, Instituto de Technologica Quimica,
Universidad Polytechnica de Valencia). Nevertheless, the 3–21G()basis apparently usually
gives good geometries (Section 5.5.1) - Warner PM (1996) J Org Chem 61:7192
- (a) Fowler JE, Galbraith JM, Vacek G, Schaefer HF (1994) J Am Chem Soc 116:9311. (b)
Vacek G, Galbraith JM, Yamaguchi Y, Schaefer HF, Nobes RH, Scott AP, Radom L (1994)
J Phys Chem 98:8660 - DeYonker NJ, Peterson KA, Wilson AK (2007) J Phys Chem A 111:11383, and references
therein. This whole issue (number 44) of J. Phys. Chem. A. is a tribute to Dunning, and
includes a short autobiography - Mebel AM, Kislov VV (2005) J Phys Chem A 109:6993
- Wiberg KB (2004) J Comp Chem 25:1342
- The special theory of relativity (the one germane to chemistry, since gravity is irrelevant to
our science) and its chemical consequences are nicely reviewed in Balasubramanian K
(1997) Relativistic effects in chemistry, Parts A and B. Wiley, New York - For a polemic against the conventional way of viewing of the effect of velocity on mass see
Okum L (1989) Physics Today, June 30 - Jacoby M (1998) Chem Eng News, 23 March, p 48
- Dirac PAM (1929) Proc R Soc A123:714: “[relativity is]...of no importance in the consider-
ation of atomic and molecular structure, and ordinary chemical reactions..." - (a) Krauss M, Stevens WJ (1984) Annu Rev Phys Chem 35:357; Szasz L (1985) Pseudopo-
tential theory of atoms and molecules. Wiley, New York. (b) Pisani L, Clementi E (1994)
Relativistic Dirac-Fock calculations on closed-shell molecules. J Comput Chem 15:466 - Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar
SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA,
Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T,
Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V,
Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli
C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakr-
zewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD,
Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J,
Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-
Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W,
Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford CT
376 5 Ab initio Calculations