Computational Chemistry

(Steven Felgate) #1

  1. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory.
    Wiley, New York, p 191

  2. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) J Phys Chem
    96:6630

  3. Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall, Engelwood Cliffs, NJ, pp. 444,
    494, 602–604.

  4. (a) A good source of information on various kinds of calculations on transition metal
    compounds is McCleverty JA, Meyer TJ (eds) (2004) Comprehensive coordination chemis-
    try. II. Elsevier, Amsterdam. (b) A detailed review: Frenking G, Antes I, B€ohme M, Dapprich
    S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov S
    (1996) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH,
    New York, chapter 2. (c) Frenking G, Pidun U (1997) J Chem Soc Dalton Trans 1653. (d)
    Cundari TR, Sommerer SO, Tippett L (1995) J Chem Phys 103:7058

  5. Whole issue devoted to relativistic and pseudopotential calculations: (2002) J Comp Chem
    23(8)

  6. Dewar MJS (1992) In: Seeman JI (ed) Profiles, pathways and dreams. American Chemical
    Society, Washington, D.C., p 185

  7. (a) Hehre WJ, Huang WW, Klunzinger PE, Deppmeier BJ, Driessen AJ (1997) A Spartan
    tutorial. Wavefunction Inc., Irvine, CA. (b) Hehre WJ, Yu J, Klunzinger PE (1997) A guide
    to molecular mechanics and molecular orbital calculations in Spartan. Wavefunction Inc.,
    Irvine, CA. (c) Hehre WJ, Shusterman AJ, Huang WW (1996) A laboratory book of
    computational organic chemistry. Wavefunction Inc., Irvine, CA

  8. Bachrach SM (2007) Computational organic chemistry. Wiley-Interscience, New York,
    p 208

  9. At the HF level calculated rotation barriers of methyltoluenes become less accurate with very
    big bases: del Rio A, Boucekkine A, Meinnel J (2003) J Comp Chem 24:2093

  10. At correlated levels bigger bases did not always give better results for metal hydrides; the
    authors say this “refutes the dogma” that bigger basis sets are necessarily better: Klein RA,
    Zottola MA (2006) Chem Phys Lett 419:254

  11. (a) Bartlett RJ, Schweigert IV, Lotrich VF (2006) J Mol Struct (Theochem) 771:1. (b)
    Lotrich VF, Bartlett RJ, Grabowski I (2005) Chem Phys Lett 405:43. (c) Wilson AK
    (2004) Abstracts, 60th Southwest Regional meeting of the American Chemical Society,
    Fort Worth, TX, September 29–October 4. (d) Yau AD, Perera SA, Bartlett RJ (2002) Mol
    Phys 100:835

  12. Moran D, Simmonett AC, Leach FE III, Allen WD, Schleyer PvR, Schaefer HF III (2006)
    J Am Chem Soc 128:9342

  13. Janoschek R (1995) Chem Unserer Zeit 29:122

  14. (a) Raghavachari K, Anderson JB (1996) J Phys Chem 100:12960. (b) A historical review:
    L€owdin P-O (1995) Int J Quant Chem 55:77. (c) Fermi and Coulomb holes and correlation:
    Pilar FL (1990) Elementary quantum chemistry, 2nd edn. McGraw-Hill, New York,
    pp 296–297

  15. Pilar FL (1990) Elementary quantum chemistry, 2nd edn. McGraw-Hill, New York, p 286

  16. For example: Hurley AC (1976) Introduction to the electron theory of small molecules.
    Academic Press, New York, pp 286–288, or Ermler WC, Kern CW (1974) J Chem Phys
    61:3860

  17. L€owdin P-O (1959) Adv Chem Phys 2:207

  18. Scott AP, Radom L (1996) J Phys Chem 100:16502

  19. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255, Chart 1

  20. See e.g. Bartlett RJ, Stanton JF (1994) In: Lipkowitz KB, Boyd DB (eds) Reviews in
    computational chemistry, vol 5. VCH, New York, chapter 2

  21. For example the helium atom: Levine IN (2000) Quantum chemistry, 5th edn. Prentice Hall,
    Engelwood Cliffs, NJ, pp 256–259


References 377

Free download pdf