P
nonbond
Enonbondðanti$CH 3 =CH 3 Þþ
P
nonbond
Enonbondðgauche$CH 3 =CH 3 Þ
¼ 3 ) 4 : 7
3 : 85
3 : 931
12
$
3 : 85
3 : 931
"# 6
þ 6 ) 4 : 7
3 : 85
3 : 065
12
$
3 : 85
3 : 065
"# 6
¼ 3 )ð$ 0 : 487 Þþ 6 )ð 54 : 05 Þ¼$ 1 : 463 þ 324 : 3 ¼323 kJ mol$^1
nonbonding contribution cf:structure with noninteracting CH= 3 S
Etotal¼EstretchþEbendþEtorsion¼ 0 þ 0 þ 21 : 0 þ323 kJ mol$^1 ¼344 kJ mol$^1
For structure 2
X
bonds
EstretchðC$CÞ¼ 6 ) 1735 ð 1 : 538 $ 1 : 538 Þ^2 þ 1 ) 1 ; 735 ð 1 : 600 $ 1 : 538 Þ^2
¼ 0 þ 6 : 67 ¼ 6 :67 kJ mol$^1
Bond stretch contribution cf:structure withleq¼ 1 : 538
X
bonds
EstretchðC$HÞ¼ 18 ) 1 ; 934 ð 1 : 083 $ 1 : 083 Þ^2 ¼ 0
Bond stretch contribution cf:structure withleq¼ 1 : 083
X
angles
EbendðHCHÞ¼ 18 ) 0 : 093 ð 110 : 7 $ 110 : 7 Þ^2 ¼ 0
Bond bend contribution cf:structure withaeq¼ 110 : 70
X
angles
EbendðCCCÞ¼ 12 ) 0 : 110 ð 112 : 5 $ 112 : 5 Þ^2 ¼ 0
Bond bend contribution cf:structure withaeq¼ 112 : 50
X
dihedrals
EtorsionðCH 3 CCCH 3 Þ¼ 6 ) 3 : 5 ¼ 21 : 0
Torsional contribution cf:structure with no gauche$butane interactions
The stretching and bending terms for structure 2 are the same as for structure 1 ,
except for the contribution of the central C-C bond; strictly speaking, the torsional
term should be smaller, since the opposing C(CH 3 ) groups have been moved apart.
X
nonbond
Enonbondðanti$CH 3 /CH 3 Þþ
X
nonbond
Enonbondðgauche$CH 3 =CH 3 Þ
¼ 3 ) 4 : 7
3 : 85
3 : 974
12
$
3 : 85
3 : 974
"# 6
þ 6 ) 4 : 7
3 : 85
3 : 120
12
$
3 : 85
3 : 120
"# 6
¼ 3 )ð$ 0 : 673 Þþ 6 )ð 41 : 97 Þ¼$ 2 : 019 þ 251 : 8
¼250kJ mol$^1
nonbonding contribution cf:structure with noninteracting CH= 3 s
3.2 The Basic Principles of Molecular Mechanics 59