Anon

(Dana P.) #1
248 The Basics of financial economeTrics

Assume that the standardized data X can be represented with four fac-
tors. Hence, we can use equation (12.9) to represent the above covariance
matrix as ΣΨX=+BB' where B is a 4 × 8 matrix of factor loadings and
Ψ is an 8 × 8 diagonal matrix of variances. Using the function factoran of
MATLAB, we estimate B and Ψ:

=

−−

−−−







          



          

B

0.7411 0.5245 0.1871 0.1707

0.9035 0.0440 0.4202 0.0107

0.7614 0.5634 0.2033 0.2069

0.8630 0.3504 0.0092 0.2900

0.9215 0.1575 0.3477 0.0137

0.6028 0.5476 0.2658 0.1600

0.8503 0.3637 0.0898 0.0025

0.6616 0.6449 0.1086 0.2814

Ψ=



          



          

0.1115 0000000

00.0050 000000

00 0.0188 00000

000 0.0482 0000

0000 0.0050 000

00000 0.2405 00

000000 0.1367 0

0000000 0.0553

We can see that

+Ψ=



          



          

BB'

1.0000 0.6159 0.3421 0.4046 0.8283 0.1819 0.4566 0.1244

0.6159 1.0000 0.5800 0.7651 0.6932 0.4072 0.7145 0.5208

0.3421 0.5800 1.0000 0.7926 0.6806 0.7884 0.8710 0.8309

0.4046 0.7651 0.7926 1.0000 0.7408 0.7561 0.8597 0.8776

0.8283 0.6932 0.6806 0.7408 1.0000 0.5638 0.7574 0.5497

0.1819 0.4072 0.7884 0.7561 0.5638 1.0000 0.7352 0.8259

0.4566 0.7145 0.8710 0.8597 0.7574 0.7352 1.0000 0.8061

0.1244 0.5208 0.8309 0.8776 0.5497 0.8259 0.8061 1.0000

is a good estimate of the covariance matrix of the standardized data. To see
this point, in order to make a quantitative evaluation of how well the matrix
BB' +Ψ approximates the covariance matrix of the standardized data, we
Free download pdf