000RM.dvi

(Ann) #1
802 Sums of consecutive squares

29.1 Sum of squares of natural numbers ...........


Theorem 29.1.

12 +2^2 +3^2 +···+n^2 =

1


6


n(n+ 1)(2n+1).

Proof.LetTn=1+2+3···+n=^12 n(n+1)and

Sn=1^2 +2^2 +3^2 +···+n^2.

23 =1^3 +3· 12 +3·1+1


33 =2^3 +3· 22 +3·2+1


43 =3^3 +3·^32 +3·3+1


..


.


n^3 =(n−1)^3 +3(n−1)^2 +3(n−1) + 1
(n+1)^3 = n^3 +3·n^2 +3·n +1

Combining these equations, we have

(n+1)^3 =1^3 +3Sn+3Tn+n.

SinceTnis known, we have

Sn=

1


3


(


(n+1)^3 −n− 1 −

3


2


n(n+1)

)


=


1


6


n(n+ 1)(2n+1).

Exercise

1.Find 12 +3^2 +5^2 +···+(2n−1)^2.

2.Findnso thatn^2 +(n+1)^2 is a square.
Free download pdf