human preimplantation development.Cell Stem Cell 25 ,
697 – 712.e6 (2019). doi:10.1016/j.stem.2019.09.004;
pmid: 31588047
- Q. Konget al., Lineage specification and pluripotency
revealed by transcriptome analysis from oocyte to blastocyst
in pig.FASEB J. 34 , 691–705 (2020). doi:10.1096/
fj.201901818RR; pmid: 31914626 - R. Yanet al., Decoding dynamic epigenetic landscapes in
human oocytes using single-cell multi-omics sequencing.
Cell Stem Cell 28 , 1641–1656.e7 (2021). doi:10.1016/
j.stem.2021.04.012; pmid: 33957080 - I. Bennabiet al., Shifting meiotic to mitotic spindle assembly
in oocytes disrupts chromosome alignment.EMBO Rep. 19 ,
368 – 381 (2018). doi:10.15252/embr.201745225;
pmid: 29330318 - V. Mountainet al., The kinesin-related protein, HSET,
opposes the activity of Eg5 and cross-links microtubules in
the mammalian mitotic spindle.J. Cell Biol. 147 , 351– 366
(1999). doi:10.1083/jcb.147.2.351; pmid: 10525540 - Y. Caoet al., Microtubule minus-end binding protein
CAMSAP2 and kinesin-14 motor KIFC3 control dendritic
microtubule organization.Curr. Biol. 30 , 899–908.e6 (2020).
doi:10.1016/j.cub.2019.12.056; pmid: 32084403 - Z. Y. She, W. X. Yang, Molecular mechanisms of kinesin-14
motors in spindle assembly and chromosome segregation.
J. Cell Sci. 130 , 2097–2110 (2017). doi:10.1242/jcs.200261;
pmid: 28668932 - S. Cai, L. N. Weaver, S. C. Ems-McClung, C. E. Walczak,
Kinesin-14 family proteins HSET/XCTK2 control spindle
length by cross-linking and sliding microtubules.Mol. Biol.
Cell 20 , 1348–1359 (2009). doi:10.1091/mbc.e08-09-0971;
pmid: 19116309 - C. E. Walczak, S. Verma, T. J. Mitchison, XCTK2: A kinesin-
related protein that promotes mitotic spindle assembly in
Xenopus laevisegg extracts.J. Cell Biol. 136 , 859– 870
(1997). doi:10.1083/jcb.136.4.859; pmid: 9049251 - T. J. Mullen, S. M. Wignall, Interplay between microtubule
bundling and sorting factors ensures acentriolar spindle
stability duringC. elegansoocyte meiosis.PLOS Genet. 13 ,
e1006986 (2017). doi:10.1371/journal.pgen.1006986;
pmid: 28910277 - C. H. Chuang, A. J. Schlientz, J. Yang, B. Bowerman,
Microtubule assembly and pole coalescence: Early steps in
Caenorhabditis elegansoocyte meiosis I spindle assembly.
Biol. Open 9 , bio.052308 (2020). doi:10.1242/bio.052308;
pmid: 32493729 - C. E. Walczak, I. Vernos, T. J. Mitchison, E. Karsenti, R. Heald,
A model for the proposed roles of different microtubule-
based motor proteins in establishing spindle bipolarity.
Curr. Biol. 8 , 903–913 (1998). doi:10.1016/S0960-9822(07)
00370-3; pmid: 9707401 - S. Morales-Mulia, J. M. Scholey, Spindle pole organization in
DrosophilaS2 cells by dynein, abnormal spindle protein
(Asp), and KLP10A.Mol. Biol. Cell 16 , 3176–3186 (2005).
doi:10.1091/mbc.e04-12-1110; pmid: 15888542 - G. Goshima, F. Nédélec, R. D. Vale, Mechanisms for focusing
mitotic spindle poles by minus end-directed motor proteins.
J. Cell Biol. 171 , 229–240 (2005). doi:10.1083/
jcb.200505107; pmid: 16247025 - J. Baumbach, Z. A. Novak, J. W. Raff, A. Wainman, Dissecting
the function and assembly of acentriolar microtubule
organizing centers inDrosophilacells in vivo.PLOS Genet. 11 ,
e1005261 (2015). doi:10.1371/journal.pgen.1005261;
pmid: 26020779 - M. Kwonet al., Mechanisms to suppress multipolar divisions
in cancer cells with extra centrosomes.Genes Dev. 22 ,
2189 – 2203 (2008). doi:10.1101/gad.1700908;
pmid: 18662975 - J. Kleylein-Sohnet al., Acentrosomal spindle organization
renders cancer cells dependent on the kinesin HSET.J. Cell
Sci. 125 , 5391–5402 (2012). doi:10.1242/jcs.107474;
pmid: 22946058 - N. Kim, K. Song, KIFC1 is essential for bipolar spindle
formation and genomic stability in the primary human
fibroblast IMR-90 cell.Cell Struct. Funct. 38 , 21–30 (2013).
doi:10.1247/csf.12014; pmid: 23318213
118. P. L. Chavaliet al., A CEP215-HSET complex links
centrosomes with spindle poles and drives centrosome
clustering in cancer.Nat. Commun. 7 , 11005 (2016).
doi:10.1038/ncomms11005; pmid: 26987684
119. B. Vitreet al., IFT proteins interact with HSET to promote
supernumerary centrosome clustering in mitosis.EMBO Rep.
21 , e49234 (2020). doi:10.15252/embr.201949234;
pmid: 32270908
120. E. A. Nigg, Centrosome aberrations: Cause or consequence of
cancer progression?Nat. Rev. Cancer 2 , 815–825 (2002).
doi:10.1038/nrc924; pmid: 12415252
121. J. Fu, I. M. Hagan, D. M. Glover, The centrosome and its
duplication cycle.Cold Spring Harb. Perspect. Biol. 7 ,
a015800 (2015). doi:10.1101/cshperspect.a015800;
pmid: 25646378
122. T. Yaoet al., Live-cell imaging of nuclear-chromosomal
dynamics in bovine in vitro fertilised embryos.Sci. Rep. 8 ,
7460 (2018). doi:10.1038/s41598-018-25698-w;
pmid: 29748644
123. T. Cavazzaet al., Parental genome unification is highly error-
prone in mammalian embryos.Cell 184 , 2860–2877.e22
(2021). doi:10.1016/j.cell.2021.04.013; pmid: 33964210
124. I. Schneider, M. de Ruijter-Villani, M. J. Hossain, T. A. E. Stout,
J. Ellenberg, Dual spindles assemble in bovine zygotes
despite the presence of paternal centrosomes.J. Cell Biol.
220 , e202010106 (2021). doi:10.1083/jcb.202010106;
pmid: 34550316
125. A. I. Mihajlović, J. Haverfield, G. FitzHarris, Distinct classes
of lagging chromosome underpin age-related oocyte
aneuploidy in mouse.Dev. Cell 56 , 2273–2283.e3 (2021).
doi:10.1016/j.devcel.2021.07.022; pmid: 34428397
126. J. Roeles, G. Tsiavaliaris, Actin-microtubule interplay
coordinates spindle assembly in human oocytes.Nat.
Commun. 10 , 4651 (2019). doi:10.1038/s41467-019-12674-9;
pmid: 31604948
127. B. T. Bajaret al., Improving brightness and photostability of
green and red fluorescent proteins for live cell imaging and
FRET reporting.Sci. Rep. 6 , 20889 (2016). doi:10.1038/
srep20889; pmid: 26879144
128. G. H. Patterson, J. Lippincott-Schwartz, A photoactivatable
GFP for selective photolabeling of proteins and cells.
Science 297 , 1873–1877 (2002). doi:10.1126/science.1074952;
pmid: 12228718
129. D. S. Bindelset al., mScarlet: A bright monomeric red
fluorescent protein for cellular imaging.Nat. Methods 14 ,
53 – 56 (2017). doi:10.1038/nmeth.4074; pmid: 27869816
130. E. R. Liman, J. Tytgat, P. Hess, Subunit stoichiometry of a
mammalian K+channel determined by construction of
multimeric cDNAs.Neuron 9 , 861–871 (1992). doi:10.1016/
0896-6273(92)90239-A; pmid: 1419000
131. Q. Zhanget al., Nudel promotes axonal lysosome clearance
and endo-lysosome formation via dynein-mediated transport.
Traffic 10 , 1337–1349 (2009). doi:10.1111/j.1600-
0854.2009.00945.x; pmid: 19522757
132. S. Pfender, V. Kuznetsov, S. Pleiser, E. Kerkhoff, M. Schuh,
Spire-type actin nucleators cooperate with Formin-2 to drive
asymmetric oocyte division.Curr. Biol. 21 , 955–960 (2011).
doi:10.1016/j.cub.2011.04.029; pmid: 21620703
133. D.Clift,C.So,W.A.McEwan,L.C.James,M.Schuh,Acute
and rapid degradation of endogenous proteins by Trim-
Away.Nat. Protoc. 13 , 2149–2175 (2018). doi:10.1038/
s41596-018-0028-3; pmid: 30250286
134. S. Hua, K. Jiang, Expression and purification of microtubule-
associated proteins from HEK293T cells for in vitro
reconstitution.Methods Mol. Biol. 2101 , 19–26 (2020).
doi:10.1007/978-1-0716-0219-5_2; pmid: 31879895
135. J. Bucevičius, G. Kostiuk, R. Gerasimaitė, T. Gilat,
G. Lukinavičius, Enhancing the biocompatibility of rhodamine
fluorescent probes by a neighbouring group effect.Chem.
Sci. 11 , 7313–7323 (2020). doi:10.1039/D0SC02154G;
pmid: 33777348
136. N. Tanaka, W. Meng, S. Nagae, M. Takeichi, Nezha/CAMSAP3
and CAMSAP2 cooperate in epithelial-specific organization
of noncentrosomal microtubules.Proc. Natl. Acad. Sci. U.S.A.
109 , 20029–20034 (2012). doi:10.1073/pnas.1218017109;
pmid: 23169647
137. A. Z. Politiet al., Quantitative mapping of fluorescently
tagged cellular proteins using FCS-calibrated four-
dimensional imaging.Nat. Protoc. 13 , 1445–1464 (2018).
doi:10.1038/nprot.2018.040; pmid: 29844523
138. N. L. Schieberet al., Minimal resin embedding of multicellular
specimens for targeted FIB-SEM imaging.Methods Cell Biol.
140 , 69–83 (2017). doi:10.1016/bs.mcb.2017.03.005;
pmid: 28528642
139. B. Li, C. N. Dewey, RSEM: Accurate transcript quantification
from RNA-Seq data with or without a reference genome.
BMC Bioinformatics 12 , 323 (2011). doi:10.1186/
1471-2105-12-323; pmid: 21816040
140. G. P. Wagner, K. Kin, V. J. Lynch, Measurement of mRNA
abundance using RNA-seq data: RPKM measure is
inconsistent among samples.Theory Biosci. 131 , 281– 285
(2012). doi:10.1007/s12064-012-0162-3; pmid: 22872506
ACKNOWLEDGMENTS
We are grateful to the patients who participated in this study. We
thank the staff from the Animal Facility and Live-Cell Imaging
Facility at the Max Planck Institute for Multidisciplinary Sciences for
technical assistance; the clinicians, nursing team, and embryology
team at the clinics for their support of this study; L. Abdelhalim,
E. Bellou, and L. Wartosch for help with human oocytes; C. Mauksch
for help with optimizing thawing of vitrified human oocytes;
E. Bellou, T. Cavazza, and M. Daniel for help with bovine and
porcine ovaries; T. Ruhwedel for help with sample preparation for
electron microscopy; E. Bellou, A. Politi, and F. Xie for helpful
discussions; A. Andersen, T. Cavazza, P. Lénárt, and L. Wartosch for
critical comments on the manuscript; T. Hiiragi, the M. J. Fox Foundation,
M. Mancini, and X. Zhu for cDNAs and constructs; and D. A. Compton,
E. Nigg, G. Goshima, P. Meraldi, A. McAinsh, M. Takeichi,
and R. Uehara for antibodies.Funding:The research leading to
these results was funded by the Max Planck Society and the DFG
under a Leibniz Prize to M.S. (SCHU 3047/1-1) and a grant to
W.M. [MO 1084/2-1 (FOR2848, P8)]. C.So is a recipient of the
Max Planck Croucher Postdoctoral Fellowship. W.M. and M.S. were
supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy–EXC 2067/1-390729940.Author contributions:C.So
and M.S. conceived the study, designed experiments and methods
for data analysis; C.So performed all experiments and analyzed
the data with the following exceptions: K.M. performed Trim-Away
of NUMA in human oocytes; J.U. performed inhibition with
P150-CC1 in human oocytes; K.H. performed live imaging of
porcine oocytes and optimized live imaging of bovine oocytes;
A.M.S. prepared electron microscopy samples with C.So and
performed FIB-SEM; K.B.S. optimized Trim-Away of NUMA and
inhibition with P150-CC1 in human oocytes; and J.B. and G.L.
synthesized 5-SiR-CTX and 5-SiR-Hoechst. C.So and M.S. wrote the
manuscript and prepared the figures with input from all authors;
W.M. supervised the electron microscopy experiments; C.Si. and
A.T.-S. supervised the collection and vitrification of human oocytes
at Fertility Center Berlin; H.E. and R.M. supervised the collection
of human oocytes at Kinderwunschzentrum Göttingen; M.B. and
K.E. supervised the collection of human oocytes at Bourn Hall
Clinic; and M.S. supervised the entire study.Competing interests:
C.So and M.S. filed a patent application (EP21199120.3) based on
data presented here. The other authors declare no competing
financial interests.Data and materials availability:Plasmids are
available from M.S. under a material transfer agreement with the Max
Planck Society. All data needed to evaluate the conclusions in the
paper are present in the main text or the supplementary materials.
SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abj3944
Figs. S1 to S14
Tables S1 and S2
MDAR Reproducibility Checklist
Movies S1 to S18
10 May 2021; resubmitted 2 November 2021
Accepted 11 January 2022
10.1126/science.abj3944
Soet al.,Science 375 , eabj3944 (2022) 11 February 2022 19 of 19
RESEARCH | RESEARCH ARTICLE