Cell count was analyzed with Imaris automatic
spot tracking aided by manual verification, and
cell migration was analyzed and verified with
manual tracking in 3D views. The surface of
large blood vessels was created according to
dextran-Tritic signaling. Spots and tracks that
lasted less than 1 min were excluded from
analysis. Migratory cDC2s were defined as cells
with at least a 30-mm track length across the
imaging period. The mean imaging period for
both types of chimeras was 45 min (number of
movies analyzed: 25Arhgef1+/−Batf3−/−Cd11c-
YFP and 29Arhgef1−/−Batf3−/−Cd11c-YFP).
Image sequences were annotated in Adobe
PhotoShop when necessary and rendered as
movies with Adobe AfterEffect. All movies are
played back at 20 frames per second (fps)
unless indicated otherwise, and time stamps
are minutes:seconds.
Statistical analysis
Statistical analysis and graphing were per-
formed using Prism 9.0 (GraphPad). Two-tailed
Student’sttests were used to compare endpoint
means of different groups. In grouped analysis,
ordinary two-way analysis of variance (ANOVA)
was performed and thePvalues indicated are
from individualttests with Sidak’s multiple test
correction. When multiple comparisons were
being performed, ordinary one-way ANOVA with
Dunnett’s multiple comparisons was used.
REFERENCESANDNOTES
- S. C. Eisenbarth, Dendritic cell subsets in T cell programming:
Location dictates function.Nat. Rev. Immunol. 19 , 89– 103
(2019). doi:10.1038/s41577-018-0088-1; pmid: 30464294 - D. A. Anderson 3rd, C. A. Dutertre, F. Ginhoux, K. M. Murphy,
Genetic models of human and mouse dendritic cell
development and function.Nat. Rev. Immunol. 21 , 101– 115
(2021). doi:10.1038/s41577-020-00413-x; pmid: 32908299 - R. E. Mebius, G. Kraal, Structure and function of the spleen.
Nat. Rev. Immunol. 5 , 606–616 (2005). doi:10.1038/nri1669;
pmid: 16056254 - K. Yamamoto, T. Kobayashi, T. Murakami, Arterial terminals in
the rat spleen as demonstrated by scanning electron
microscopy of vascular casts.Scan. Electron Microsc. 1982 ,
455 – 458 (1982). pmid: 7167761 - E. E. Schmidt, I. C. MacDonald, A. C. Groom, Comparative
aspects of splenic microcirculatory pathways in mammals: The
region bordering the white pulp.Scanning Microsc. 7 , 613– 628
(1993). pmid: 8108677 - T. Yi, J. G. Cyster, EBI2-mediated bridging channel positioning
supports splenic dendritic cell homeostasis and particulate
antigen capture.eLife 2 , e00757 (2013). doi:10.7554/
eLife.00757; pmid: 23682316 - S. Calabroet al., Differential intrasplenic migration of dendritic
cell subsets tailors adaptive immunity.Cell Rep. 16 , 2472– 2485
(2016). doi:10.1016/j.celrep.2016.07.076; pmid: 27545885 - E. Lu, E. V. Dang, J. G. McDonald, J. G. Cyster, Distinct
oxysterol requirements for positioning naïve and activated
dendritic cells in the spleen.Sci. Immunol. 2 , eaal5237 (2017).
doi:10.1126/sciimmunol.aal5237; pmid: 28738017 - D. Liu, J. Wu, J. An, J. G. Cyster, Requirements for cDC2
positioning in blood-exposed regions of the neonatal and adult
spleen.J. Exp. Med. 217 , e20192300 (2020). doi:10.1084/
jem.20192300; pmid: 32808016 - T. I. Arnon, R. M. Horton, I. L. Grigorova, J. G. Cyster,
Visualization of splenic marginal zone B-cell shuttling and
follicular B-cell egress.Nature 493 , 684–688 (2013). doi:
10.1038/nature11738; pmid: 23263181 - D. Gattoet al., The chemotactic receptor EBI2 regulates the
homeostasis, localization and immunological function of
splenic dendritic cells.Nat. Immunol. 14 , 446–453 (2013).
doi:10.1038/ni.2555; pmid: 23502855
12. T. Worzfeld, N. Wettschureck, S. Offermanns, G(12)/G(13)-
mediated signalling in mammalian physiology and disease.
Trends Pharmacol. Sci. 29 , 582–589 (2008). doi:10.1016/
j.tips.2008.08.002; pmid: 18814923
13. E. Lu, J. G. Cyster, G-protein coupled receptors and ligands
that organize humoral immune responses.Immunol. Rev. 289 ,
158 – 172 (2019). doi:10.1111/imr.12743; pmid: 30977196
14. K. L. Lewiset al., Notch2 receptor signaling controls functional
differentiation of dendritic cells in the spleen and intestine.
Immunity 35 , 780–791 (2011). doi:10.1016/
j.immuni.2011.08.013; pmid: 22018469
15. T. Langenhan, G. Aust, J. Hamann, Sticky signaling—
Adhesion class G protein–coupled receptors take the stage.
Sci. Signal. 6 , re3 (2013). doi:10.1126/scisignal.2003825;
pmid: 23695165
16. R. H. Purcell, R. A. Hall, Adhesion G protein–coupled receptors
as drug targets.Annu. Rev. Pharmacol. Toxicol. 58 , 429– 449
(2018). doi:10.1146/annurev-pharmtox-010617-052933;
pmid: 28968187
17. A. Vizurraga, R. Adhikari, J. Yeung, M. Yu, G. G. Tall,
Mechanisms of adhesion G protein–coupled receptor
activation.J. Biol. Chem. 295 , 14065–14083 (2020).
doi:10.1074/jbc.REV120.007423; pmid: 32763969
18. J. C. Leemanset al., The epidermal growth factor-seven
transmembrane (EGF-TM7) receptor CD97 is required for
neutrophil migration and host defense.J. Immunol. 172 ,
1125 – 1131 (2004). doi:10.4049/jimmunol.172.2.1125;
pmid: 14707087
19. S. H. Dho, J. C. Lim, L. K. Kim, Beyond the role of CD55 as a
complement component.Immune Netw. 18 , e11 (2018).
doi:10.4110/in.2018.18.e11; pmid: 29503741
20. J. Hamann, B. Vogel, G. M. van Schijndel, R. A. van Lier, The
seven-span transmembrane receptor CD97 has a cellular
ligand (CD55, DAF).J. Exp. Med. 184 , 1185–1189 (1996).
doi:10.1084/jem.184.3.1185; pmid: 9064337
21. D. Hilbiget al., Mechano-dependent phosphorylation of the
PDZ-binding motif of CD97/ADGRE5 modulates cellular
detachment.Cell Rep. 24 , 1986–1995 (2018). doi:10.1016/
j.celrep.2018.07.071; pmid: 30134161
22. C. C. Hsiaoet al., CD97 inhibits cell migration in human
fibrosarcoma cells by modulating TIMP-2/MT1- MMP/MMP-2
activity—Role of GPS autoproteolysis and functional
cooperation between the N- and C-terminal fragments.
FEBS J. 281 , 4878–4891 (2014). doi:10.1111/febs.13027;
pmid: 25174588
23. I. Liebscheret al., A tethered agonist within the ectodomain
activates the adhesion G protein–coupled receptors GPR126
and GPR133.Cell Rep. 9 , 2018–2026 (2014). doi:10.1016/
j.celrep.2014.11.036; pmid: 25533341
24. G. F. Heidkampet al., Human lymphoid organ dendritic cell
identity is predominantly dictated by ontogeny, not tissue
microenvironment.Sci. Immunol. 1 , eaai7677 (2016).
doi:10.1126/sciimmunol.aai7677; pmid: 28783692
25. E. S. Russell, S. E. Bernstein, inBiology of the Laboratory
Mouse, E. L. Green, Ed. (Dover Publications, 1966), vol. 2,
chap. 17.
26. O. N. Karpuset al., Shear stress-dependent downregulation of
the adhesion-G protein-coupled receptor CD97 on circulating
leukocytes upon contact with its ligand CD55.J. Immunol. 190 ,
3740 – 3748 (2013). doi:10.4049/jimmunol.1202192;
pmid: 23447688
27. G. Posern, R. Treisman, Actin’together: Serum response
factor, its cofactors and the link to signal transduction.Trends
Cell Biol. 16 , 588–596 (2006). doi:10.1016/j.tcb.2006.09.008;
pmid: 17035020
28. D. Gau, P. Roy, SRF’ing and SAP’ing - the role of MRTF proteins
in cell migration.J. Cell Sci. 131 , jcs218222 (2018).
doi:10.1242/jcs.218222; pmid: 30309957
29. C. Guentheret al., Ab2-integrin/MRTF-A/SRF pathway
regulates dendritic cell gene expression, adhesion, and traction
force generation.Front. Immunol. 10 , 1138 (2019).
doi:10.3389/fimmu.2019.01138; pmid: 31191527
30. P. Costelloet al., MRTF-SRF signaling is required for seeding of
HSC/Ps in bone marrow during development.Blood 125 ,
1244 – 1255 (2015). doi:10.1182/blood-2014-08-595603;
pmid: 25573994
31. K. Hildneret al., Batf3 deficiency reveals a critical role for
CD8a+dendritic cells in cytotoxic T cell immunity.Science 322 ,
1097 – 1100 (2008). doi:10.1126/science.1164206;
pmid: 19008445
32. J. Arasa, V. Collado-Diaz, C. Halin, Structure and immune
function of afferent lymphatics and their mechanistic
contribution to dendritic cell and T cell trafficking.Cells 10 ,
1269 (2021). doi:10.3390/cells10051269; pmid: 34065513
- C. G. Briseñoet al., Notch2-dependent DC2s mediate splenic
germinal center responses.Proc. Natl. Acad. Sci. U.S.A. 115 ,
10726 – 10731 (2018). doi:10.1073/pnas.1809925115;
pmid: 30279176 - J. E. Hendrickson, E. A. Hod, S. L. Spitalnik, C. D. Hillyer,
J. C. Zimring, Storage of murine red blood cells enhances
alloantibody responses to an erythroid-specific model antigen.
Transfusion 50 , 642–648 (2010). doi:10.1111/j.1537-
2995.2009.02481.x; pmid: 19906034 - E. K. Perssonet al., IRF4 transcription-factor-dependent CD103
+CD11b+dendritic cells drive mucosal T helper 17 cell
differentiation.Immunity 38 , 958–969 (2013). doi:10.1016/
j.immuni.2013.03.009; pmid: 23664832 - J. Li, E. Lu, T. Yi, J. G. Cyster, EBI2 augments Tfh cell fate by
promoting interaction with IL-2-quenching dendritic cells.
Nature 533 , 110–114 (2016). doi:10.1038/nature17947;
pmid: 27147029 - K. Kabashimaet al., Intrinsic lymphotoxin-beta receptor
requirement for homeostasis of lymphoid tissue dendritic cells.
Immunity 22 , 439–450 (2005). doi:10.1016/
j.immuni.2005.02.007; pmid: 15845449 - ENCODE Project Consortium, An integrated encyclopedia of
DNA elements in the human genome.Nature 489 , 57– 74
(2012). doi:10.1038/nature11247; pmid: 22955616 - S. Bajaña, K. Roach, S. Turner, J. Paul, S. Kovats, IRF4
promotes cutaneous dendritic cell migration to lymph nodes
during homeostasis and inflammation.J. Immunol. 189 ,
3368 – 3377 (2012). doi:10.4049/jimmunol.1102613;
pmid: 22933627 - Y. Gaoet al., Control of T helper 2 responses by transcription
factor IRF4-dependent dendritic cells.Immunity 39 , 722– 732
(2013). doi:10.1016/j.immuni.2013.08.028; pmid: 24076050 - R. Tussiwandet al., Klf4 expression in conventional dendritic
cells is required for T helper 2 cell responses.Immunity 42 ,
916 – 928 (2015). doi:10.1016/j.immuni.2015.04.017;
pmid: 25992862 - J. K. Krishnaswamyet al., Migratory CD11b+conventional
dendritic cells induce T follicular helper cell-dependent
antibody responses.Sci. Immunol. 2 , eaam9169 (2017).
doi:10.1126/sciimmunol.aam9169; pmid: 29196450 - N. Scholz, K. R. Monk, R. J. Kittel, T. Langenhan, Adhesion
GPCRs as a putative class of metabotropic mechanosensors.
Handb. Exp. Pharmacol. 234 , 221–247 (2016). doi:10.1007/
978-3-319-41523-9_10; pmid: 27832490 - C. Laudanna, J. J. Campbell, E. C. Butcher, Role of Rho in
chemoattractant-activated leukocyte adhesion through
integrins.Science 271 , 981–983 (1996). doi:10.1126/
science.271.5251.981; pmid: 8584934 - J. Yeunget al., GPR56/ADGRG1 is a platelet collagen-
responsive GPCR and hemostatic sensor of shear force.Proc.
Natl. Acad. Sci. U.S.A. 117 , 28275–28286 (2020). doi:10.1073/
pnas.2008921117; pmid: 33097663 - S. A. Francis, X. Shen, J. B. Young, P. Kaul, D. J. Lerner, Rho
GEF Lsc is required for normal polarization, migration, and
adhesion of formyl-peptide-stimulated neutrophils.Blood 107 ,
1627 – 1635 (2006). doi:10.1182/blood-2005-03-1164;
pmid: 16263795 - K. M. Ruppelet al., Essential role for Ga 13 in endothelial cells
during embryonic development.Proc. Natl. Acad. Sci. U.S.A.
102 , 8281–8286 (2005). doi:10.1073/pnas.0503326102;
pmid: 15919816 - S. Chen, B. Lee, A. Y. Lee, A. J. Modzelewski, L. He, Highly
efficient mouse genome editing by CRISPR ribonucleoprotein
electroporation of zygotes.J. Biol. Chem. 291 , 14457– 14467
(2016). doi:10.1074/jbc.M116.733154; pmid: 27151215 - Z. Yang, C. D. C. Allen, Expression of exogenous genes in
murine primary B cells and B cell lines using retroviral vectors.
Methods Mol. Biol. 1707 , 39–49 (2018). doi:10.1007/978-1-
4939-7474-0_3; pmid: 29388098 - K. Ley, E. Lundgren, E. Berger, K. E. Arfors, Shear-dependent
inhibition of granulocyte adhesion to cultured endothelium by
dextran sulfate.Blood 73 , 1324–1330 (1989). doi:10.1182/
blood.V73.5.1324.1324; pmid: 2467707 - J. J. Wanget al., A mouse model of vascularized heterotopic
spleen transplantation for studying spleen cell biology and
transplant immunity.J. Vis. Exp.(148): (2019). doi:10.3791/
59616 ; pmid: 31259895
ACKNOWLEDGMENTS
We thank S. Coughlin forArhGEF1-andGna13-deficient mice and
R. Brink for HEL2x. We thank M. De Giovanni for advice regarding
Liuet al.,Science 375 , eabi5965 (2022) 11 February 2022 12 of 13
RESEARCH | RESEARCH ARTICLE