2.3 Solutions 127
The eigen vector associated withλ 1 =1is
|ψ 1 >=
∑^2
n= 1
Cn|n>with−C 1 −iC 2 = 0 ,C 2 =iC 1 ,
|ψ 1 >=
1
√
2
| 1 >+
i
√
2
| 2 >
The eigen vector associated withλ 2 =−1is
|ψ 2 >=
∑^2
n= 1
Cn|n>withC 1 −iC 2 = 0 ,C 2 =−iC 1 ,
|ψ 2 >=
1
√
2
| 1 >−
i
√
2
| 2 >
(c) The projector onto|ψi>isPi=|ψi>< ψi|.
Matrix ofP 1 =
[ 1
2 −
i
2
i
2
1
2
]
,matrix ofP 2 =
[ 1
2
i
2
−i 2 12
]
P 1 †P 2
[
00
00
]
= 0 ,P 1 P 1 † +P 2 P 2 †=I
2.80 (i)σx
(^2) =
(
01
10
)(
01
10
)
=
(
10
01
)
(ii) [σx,σy]=
(
01
10
)(
0 −i
i 0
)
−
(
0 −i
i 0
)(
01
10
)
=
(
i 0
0 −i
)
−
(
−i 0
0 i
)
=
(
2 i 0
0 − 2 i
)
= 2 i
(
10
0 − 1
)
= 2 iσz
2.81Proof : AX=λ 1 X (1)
BX=λ 2 X (2)
whereλ 1 andλ 2 are the eigen values belonging to the same stateλ.
BAX=Bλ 1 X=λ 1 BX=λ 1 λ 2 X (3)
ABX=Aλ 2 X=λ 2 AX=λ 2 λ 1 X=λ 1 λ 2 X (4)
Subtracting (3) from (4)
(AB−BA)X= 0
ThereforeAB−BA=0, becauseX
= 0
Operate withBonAin (1) and withAandBin (2)
Or [A,B]= 0