2.3 Solutions 129
The precise statement of the Heisenberg uncertainty principle is
ΔPxΔx≥/ 2
ΔPyΔy≥/2(3)
ΔPzΔz≥/ 2Consider the integral, a function of a real parameterλI(λ)=∫∞
−∞dx|(x−<x>)ψ+iλ(−i∂ψ/∂x−<Px>ψ|^2 (4)By definition,I(λ≥0). Expanding (4)I(λ)=∫∞
−∞dxψ∗(x−<x>)^2 ψ+λ∫∞
−∞dx(
ψ∗∂ψ
∂x+ψ∂ψ∗
∂x)
(x−<x>)+λ^2 ^2∫∞
−∞(
∂ψ∗
∂x)
∂ψ
∂x−iλ(^2)
∫∞
−∞
dx[ψ
∂ψ∗
∂x +λ
(^2)
∫∞
−∞
dxψ∗ψ (5)
The term in the second line can be written as
∫∞
−∞
dx
∂
∂x(ψ∗ψ)(x−<x>)=[(x−<x>)ψ∗ψ]∞−∞−∫∞
−∞dxψ∗ψ=− 1because it is expected thatψ→0. Sufficiently fast asx→±∞so that the
integrated term is zero. Similarly the third term can be re-written as^2∫∞−∞dx(
∂ψ∗
∂x)(
∂ψ
∂x)
=^2[
ψ∗
∂ψ
∂x]∞−∞+∫∞−∞dxψ∗(−^2 ∂^2 ψ/∂x^2 )=<Px^2 >In term (4) rewrite−i∫∞
−∞dx∂ψ∗
∂xψ=−i[
ψ∗ψ]∞
−∞+
∫∞
−∞dxψ∗i∂ψ
∂x=−<Px>So, the full term (4) becomes− 2 <Px>^2.
Collecting all the termsI(λ)=(Δx)^2 −λ+(ΔPx)^2 λ^2 ≥ 0Denoting I(λ) = aλ^2 +bλ+c, the condition I(λ ≥ 0) is satisfied if
b^2 − 4 ac≥0.
Thus,^2 −4(Δx)^2 (ΔPx)^2 ≤0, and thereforeΔPxΔx≥/ 22.85ΔxΔp=
cΔP≈cp=c
Δx=
197 .3MeV−fm
0. 529 × 10 −^10 m
= 372. 97 × 10 −^5 MeV= 3 ,730 eV
T=c^2 p^2 /mc^2 =(3,730)^2 / 0. 511 × 106 = 13 .61 eV