158 3 Quantum Mechanics – II
This is the continuity equation where the probability currentJ= 2 im^1 (φ∗∇φ−
φ∇φ∗)
And probability density
ρ=
i
2 m
(
φ∗
∂φ
∂t
−φ
∂φ∗
∂t
)
For a force free particle the solution of the Klein – Gordan equation isφ=
Aei(p.x−Et)
The probability density is
ρ=
i
2 m
[(
A∗e−i(p.x−Et)
)
(iAE)e−i(p.x−Et)−
(
Ae−i(p.x−Et)
)(
iA∗E
)
e−i(p.x−Et)
]
=
i
2 m
[
A∗A(−iE)−AA∗(iE)
]
=
|A|^2
2 m
[E+E]=E
|A|^2
m
AsEcan have positive and negative values, the probability density could
then be negative
3.6 (a) Class I: Refer to Problem 3.25
ψ 1 =Aeβx(−∞<x<−a)
ψ 2 =Dcosαx(−a<x<+a)
ψ 3 =Ae−βx(a<x<∞)
Normalization implies that
∫−a
−∞
|ψ 1 |^2 dx+
∫a
−a
|ψ 2 |^2 dx+
∫∞
a
|ψ 3 |^2 dx= 1
∫−a
−∞
A^2 e^2 βxdx+
∫a
−a
D^2 cos^2 αxdx+
∫∞
a
A^2 e−^2 βxdx= 1
A^2 e−^2 βa/^2 β+D^2 [a+sin(2αa)/ 2 α]+A^2 e−^2 βa/^2 β=^1
Or
A^2 e−^2 βa/β+D^2 (a+sin(2αa)/ 2 α)=1(1)
Boundary condition atx=agives
Dcosαa=ae−βa (2)
Combining (1) and (2) gives
D=
(
a+
1
β
)− 1
A=eβacosαa
(
a+
1
β