3.3 Solutions 161
3.9 (ψ,Qψ)=(ψ,qψ)=q(ψ,ψ)
(Qψ,ψ)=(qψ,ψ)=q∗(ψ,ψ)
sinceQis hermitian,
(ψ,Qψ)=(Qψ,ψ) and thatq=q∗
That is, the eigen values are real. The converse of this theorem is also true,
namely, an operator whose eigen values are real, is hermitian.3.10 (a) The normalization condition requires
∫∞−∞|ψ|^2 dx=∫a− 3 a|c|^2 dx= 1 = 4 a|c|^2Thereforec= 1 / 2√
a
(b)∫a
0 |ψ|(^2) dx=∫α
0 c
(^2) dx= 1 / 4
3.11 (a) The expectation values are
∫∞
−∞ψ∗xψdx=∫a− 3 axdx
4 a=−a<x^2 >=∫∞
−∞ψ∗x^2 ψdx=∫a− 3 a(1/ 4 a)x^2 dx=(
7
3
)
a^2xσ^2 =<x^2 >−<x>^2 =(
7
3
)
a^2 −(−a)^2 =4
3
a^2(b) Momentum probability density is|φ(p)|^2φ(p)=(2π)−^1 /^2∫∞
−∞dxψ(x)e−ipx/=(2π)−^1 /^2∫a− 3 adxce−ipx/=
(
ic
p)(
2 π) 1 / 2
⎡
⎣e
−ipa
−e3 ipa
⎤
⎦
=
(
−
ic
p)(
2 π) 1 / 2
eipa/⎡
⎣e2 ipa
−e− 2 ipa
⎤
⎦
=
(
2 c
p)(
2 π)^1
(^2) e
ipa
sin
(
2 pa
)
Therefore|φ(p)|^2 = 2 πap 2 sin^2(
2 pa