178 3 Quantum Mechanics – II
∫R0|ψ 1 |^2 dτ+∫∞
R|ψ 2 |^2 dτ= 1
∫R0u^21. 4 πr^2 dr/r^2 +∫∞
Ru^224 πr^2 dr/r^2 = 1A^2
∫ R
0sin^2 krdr+C^2∫∞
Re−^2 γrdr= 1 / 4 πIntegrating and using (2), we findA^2 =γ
2 π(γR+1)(4)
Using (4) in (3)P=
1
γR+ 1(5)
NowγR=(
MW
^2
) 1 / 2
R=
(
Mc^2 W
^2 c^2) 1 / 2
R
=
[
940 × 2. 2
(197.3)^2
] 1 / 2
× 2. 1 = 0. 48
where we have insertedMc^2 = 940 MeV/c^2 ,W= 2. 2 MeVandR= 2. 1 fmThereforep= 0. 481 + 1 = 0. 67
Thus neutron and proton stay outside the range of nuclear forces approxi-
mately 70% of time.3.27 By Problem 3.25, for the finite well, for class I
αtanαa=β
withα=(2mE)
21
;β=[2m(V 0 −E)](^12)
AsV 0 →∞,β→∞andαa=nπ/2(nodd)
Therefore,α^2 a^2 =^2 mEa
2
^2 =
n^2 π^2
4
OrE=n^2 π^2 ^2 / 8 ma^2 (nodd)
For class II
αcotαa=−β
AsV 0 →∞,β→∞andαa=nπ/2(neven)