178 3 Quantum Mechanics – II
∫R
0
|ψ 1 |^2 dτ+
∫∞
R
|ψ 2 |^2 dτ= 1
∫R
0
u^21. 4 πr^2 dr/r^2 +
∫∞
R
u^224 πr^2 dr/r^2 = 1
A^2
∫ R
0
sin^2 krdr+C^2
∫∞
R
e−^2 γrdr= 1 / 4 π
Integrating and using (2), we find
A^2 =
γ
2 π(γR+1)
(4)
Using (4) in (3)
P=
1
γR+ 1
(5)
NowγR=
(
MW
^2
) 1 / 2
R=
(
Mc^2 W
^2 c^2
) 1 / 2
R
=
[
940 × 2. 2
(197.3)^2
] 1 / 2
× 2. 1 = 0. 48
where we have insertedMc^2 = 940 MeV/c^2 ,
W= 2. 2 MeVandR= 2. 1 fm
Thereforep= 0. 481 + 1 = 0. 67
Thus neutron and proton stay outside the range of nuclear forces approxi-
mately 70% of time.
3.27 By Problem 3.25, for the finite well, for class I
αtanαa=β
withα=
(2mE)
21
;β=
[2m(V 0 −E)]
(^12)
AsV 0 →∞,β→∞andαa=nπ/2(nodd)
Therefore,α^2 a^2 =^2 mEa
2
^2 =
n^2 π^2
4
OrE=n^2 π^2 ^2 / 8 ma^2 (nodd)
For class II
αcotαa=−β
AsV 0 →∞,β→∞andαa=nπ/2(neven)