188 3 Quantum Mechanics – II
Going back to (3)1
Y∂^2 Y
∂y^2+
1
Z
∂^2 Z
∂z^2=−α^21
Z
∂^2 Z
∂z^2=−
1
Y
∂^2 Y
∂y^2−α^2 (6)Each side must be equal to a constant, say−γ^2 for the same argument as
before.−1
Y
∂^2 Y
∂y^2−α^2 =−γ^2Or−1
Y
∂^2 Y
∂y^2+
(
α^2 −γ^2)
= 0
Or
∂^2 Y
∂y^2+μ^2 Y= 0whereμ^2 =α^2 −γ^2 (7)
Y=Dsinμy
Y= 0 at y=bThis givesμ=nyπ
b(8)
Going back to (6)
(
1
Z)
d^2 Z
dz^2=−γ^2This givesZ=Fsinγz
whereγ=nzπ
c(9)
∴ψ∼sin(nxπx
a)
sin(nyπy
b)
sin(nzπz
c)
(b) Combining (4), (5), (7), (8) and (9)μ^2 =α^2 −γ^2 =(2mE/^2 )−β^2 −γ^2
Or
2 mE
^2=μ^2 +β^2 +γ^2 =(nyπ
b) 2
+
(nxπ
a) 2
+
(nzπ
c) 2
OrE=(
h^2
8 m)(
n^2 x
a^2+
n^2 y
b^2+
n^2 z
c^2)
(10)
3.40 Fora=b=c
E=(h/ 8 ma^2 )
(
n^2 x+n^2 y+n^2 z)
(Equation 10 of Prob 3.39)