3.3 Solutions 203
Similarly<Δpx>^2 =<p^2 >(^1) /
2 mω
(^2) <x (^2) >·
(
1
2 m)
<px>^2 ≤1
4
(
ω
2) 2
[
<x^2 ><px^2 >] 1 / 2
≤
2
orΔx.Δpx≤ 2
Now compare this result with the uncertainty principleΔx·Δpx≤2
We conclude thatΔx.Δpx≥ 2. Obviously the zero point energy could not
have been lower than 2 ωwithout violating the uncertainty principle.3.55 The probability distribution for the quantum mechanical simple harmonic
oscillator (S.H.O) is
P(x)=|ψn|^2 =αexp(−ξ^2 )Hn^2 (ξ)
√
π 2 nn!(1)
ξ=αx;α^4 =mk/^2
Stirling approximation gives
n!→(2nπ)^1 /^2 nne−n (2)
Furthermore the asymptotic expression for Hermite function isHn(ξ)(forn→∞)→ 2 n+^1(n/ 2 e)
n 2
√
2 cosβexp(nβ^2 ) cos[
(2n+^1 / 2 )β−nπ
2]
(3)
where sinβ=ξ/√
2 n (4)
Using (2) and (3) in (1)P(x)→ 2 αexp(−ξ^2 )exp(2nβ^2 )cos^2[(
2 n+^12)
β−n 2 π]
π√
2 ncosβ
But<cos^2[(
2 n+^12)
β−n 2 π]
>=^12
ThereforeP(x)=αexp(−ξ^2 )exp(2nβ^2 )
π√
2 ncosβ(5)
Fig. 3.23Probability distribution of quantum mechanical oscillator and classical oscillator