6 1 Mathematical Physics
Recurrence formulas:
xPn′(x)−Pn′− 1 (x)=nPn(x)
Pn′+ 1 (x)−Pn′− 1 (x)=(2n+1)Pn(x) (1.32)Orthonormal properties:
∫ 1− 1Pm(x)Pn(x)dx= 0 m
=n (1.33)
∫ 1− 1{Pn(x)}^2 dx=2
2 n+ 1(1.34)
Other properties:
Pn(1)= 1 ,Pn(−1)=(−1)n,Pn(−x)=(−1)nPn(x) (1.35)Associated Legendre functions:
Differential equation:
(1−x^2 )y′′− 2 xy′+{
l(l+1)−m^2
1 −x^2}
y= 0 (1.36)Plm(x)=(1−x^2 )m/^2dm
dxmPl(x) (1.37)wherePl(x) are the Legendre polynomials stated previously,lbeing the positive
integer.
Plo(x)=Pl(x) (1.38)
andPlm(x)=0ifm>n (1.39)Orthonormal properties:
∫ 1− 1Pnm(x)Plm(x)dx= 0 n
=l (1.40)
∫ 1− 1{Plm(x)}^2 dx=2
2 l+ 1(l+m)!
(l−m)!(1.41)
Laguerre polynomials:
Differential equation:
xy′′+(1−x)y′+ny= 0 (1.42)ifn= 0 , 1 , 2 ,...we get Laguerre polynomials given by