3.3 Solutions 229
3.3.7 Approximate Methods .........................
3.97ΔE=<ψ|δU|ψ>
δU=U(interaction energy of electron with point charge nucleus)
δU=e^2 /r−
3 e^2
2 R
(
R^2 −
r^2
3
)
forr≤R
=0forr≥R
(a) First we considern=1 state
ΔE=
(
e^2
πa 03
)∫ R
0
exp
(
−
2r
a 0
)[
1
r
−
3
2 R
+^1 / 2
r^2
R^3
]
4 πr^2 dr
=
2 e^2
a^30
∫ R
0
e−2r/a^0
[
2 r−
3 r^2
R
+
r^4
R^3
]
dr
NowR= 10 −^13 cm 10 −^8 cm=a 0 , the factor exp
(
−^2 ar 0
)
≈ 1
ΔE=
(
2 e^2
a 03
)(
R^2 −R^2 +
R^2
5
)
=
4
5
(
e^2
2 a 0
)(
R
a 0
) 2
=(0.8)(13.6)
(
10 −^13
0. 53 × 10 −^8
) 2
= 3. 87 × 10 −^9 eV
(b)n= 2
ψ 200 =
(
1
8 πa 03
)^12 (
2 −
r
a 0
)
exp
(
−
r
2 a 0
)
ΔE=
(
e^2
8 πa 03
)∫R
0
exp
(
−
r
a 0
)(
2 −
r
a 0
) 2 [
1
r
−
3
2 R
+^1 / 2
r^2
R^3
]
4 πr^2 dr
Here also exp
(
−ar 0
)
∼1, for reasons indicated in (a)
When the remaining factors are integrated we get
ΔE=
(
e^2
2 a 0
)(
R^2
a^20
)[
2
5
−
1
6
R
a 0
+
3
140
R^2
a 02
]
≈
2
5
.
(
e^2
2 a 0
)(
R
a 0
) 2 (
as
R
a 0
<< 1
)
=^1 / 2 × 3. 87 × 10 −^9 = 1. 93 × 10 −^9 eV
where we used the result of (a)
3.98 Schrodinger’s equation in the presence of electric field is
[(
−
^2
2 m
)
d^2
dx^2
+^1 / 2 mω^2 x^2 +qEx
]
ψn=Enx (1)
Now,^1 / 2 mω^2 x^2 +qEx=^1 / 2 mω^2
[
x^2 +^2 mqExω 2