232 3 Quantum Mechanics – II
2 S(m=0);ψ 2 s(0)=(4π)−(^12)
(
1
2 a)^32 (
2 −
r
a)
exp(
−
r
a)
2 P(m=0);ψ 2 p(0)=(4π)−(^12)
(
1
2 a)^32 (
r
a)
exp(
−
r
2 a)
cosθWe can calculate< 2 , 0 , 0 |z| 2 , 1 , 0 >=< 2 , 0 , 0 |rcosθ| 2 , 1 , 0 >=
(
1
4 π)(
1
2 a) 3 (
1
a)∫∞
0r^4(
2 −
r
a)
exp(
−
r
a)
dr∫π0cos^2 θsinθdθ∫ 2 π0dφ=− 3 aThus, the linear Stark effect splits the degeneratem=0 level into two
components, with the shiftΔE=± 3 ae|E|The corresponding eigen functions are√^12 (ψs(0)∓ψp(0))
The two components being mixed in equal proportion (Fig. 3.27).Fig. 3.27Stark effect in
Hydrogen
3.102 E=
∫+a−a(
1
√
a)
cos(πx
2 a)[(
−
^2
2 m)
d^2
dx^2+ 1 / 2 mω^2 x^2]
1
√
acos(πx
2 a)
dx=
π^2 ^2
8 ma^2+
mω^2 a^4
10+
8 a^5
π^2(
1 −
6
π^2)
The best approximation to the ground-state wave function is obtained by
setting∂∂αE=0. This givesa=[
3 π^2 ^2
5 m^2 ω^2 (π^2 −3)] 1 / 4
3.103 The unperturbed wave function is
ψ^0 =ksin(n
1 πx
a)
sin(n 2 πy/a);H′=W 0E=
(
π^2
2 ma^2)
(
n^21 +n^22