232 3 Quantum Mechanics – II
2 S(m=0);ψ 2 s(0)=(4π)−
(^12)
(
1
2 a
)^32 (
2 −
r
a
)
exp
(
−
r
a
)
2 P(m=0);ψ 2 p(0)=(4π)−
(^12)
(
1
2 a
)^32 (
r
a
)
exp
(
−
r
2 a
)
cosθ
We can calculate
< 2 , 0 , 0 |z| 2 , 1 , 0 >=< 2 , 0 , 0 |rcosθ| 2 , 1 , 0 >
=
(
1
4 π
)(
1
2 a
) 3 (
1
a
)∫∞
0
r^4
(
2 −
r
a
)
exp
(
−
r
a
)
dr
∫π
0
cos^2 θsinθdθ
∫ 2 π
0
dφ
=− 3 a
Thus, the linear Stark effect splits the degeneratem=0 level into two
components, with the shift
ΔE=± 3 ae|E|
The corresponding eigen functions are√^12 (ψs(0)∓ψp(0))
The two components being mixed in equal proportion (Fig. 3.27).
Fig. 3.27Stark effect in
Hydrogen
3.102 E=
∫+a
−a
(
1
√
a
)
cos
(πx
2 a
)[(
−
^2
2 m
)
d^2
dx^2
+ 1 / 2 mω^2 x^2
]
1
√
a
cos
(πx
2 a
)
dx
=
π^2 ^2
8 ma^2
+
mω^2 a^4
10
+
8 a^5
π^2
(
1 −
6
π^2
)
The best approximation to the ground-state wave function is obtained by
setting∂∂αE=0. This gives
a=
[
3 π^2 ^2
5 m^2 ω^2 (π^2 −3)
] 1 / 4
3.103 The unperturbed wave function is
ψ^0 =ksin
(n
1 πx
a
)
sin(n 2 πy/a);H′=W 0
E=
(
π^2
2 ma^2
)
(
n^21 +n^22