234 3 Quantum Mechanics – II
Nowψican be expanded as a sum of partial waves
ψi=eikrcosθ=∑∞
l= 0
Aljl(kr)pl(cosθ)(8)
wherejl(kr) are the spherical Bessel functions andpl(cosθ) are the Legen-
dre polynomials of degreel.Forr→∞,jl(kr)≈kr^1 sin(
kr−π 2 l)
.TheAl
are some constants which can be evaluated as follows.
Multiply both sides of (8) byPl(cosθ)sinθdθand integrate. Put cosθ=tAljl(kr)2/(2l+1)=∫+ 1
− 1eikrtpl(t)(d)twhere we have used the orthonormal property of Legendre polynomials.
Integrating the RHS by parts(1/ikr)[
eikrtpl(t)]+ 1
− 1 −(1/ikr)∫
eikrtpl′(t)dtwhere prime (′) means differentiation with respect to t. The second term is of
the order of 1/r^2 which can be neglected. Therefore
[
2
2 l+ 1]
Aljl(kr)≈(
1
ikr)
[
eikr−e−ikr(−1)l]
(9)
where we have usedpl(1)=1 andpl(−1)=(−1)l
Also, using the identity
eiπl/^2 =il (10)
(9) becomes
[
2
2 l+ 1]
Aljl(kr)≈[
2 il
kr][
ei(kr−πl
2 )−e−i(kr−
πl
2 )]
2 i=2 ilsin(
kr−π 2 l)
kr
ThusAljl(kr)=(2l+1)ilsin(
kr−π 2 l)
kr(11)
Similarly, we can expand the total wave function into componentsψ(r,θ)=∑∞
l= 0
BlRl(r)pl(cosθ)=
∑
r→∞(
Bk
kr)
sin(
kr−πl
2+δl)
pl(cosθ)where Blare arbitrary coefficients andδlis the phase-shift of thelth wave.
From (6)f(θ)=re−ikr[∑
Bl(
1
krsin(
kr−πl
2+δl)
pl(cosθ))
−
Σil(2l+1)
krsin(
kr−πl
2)
pl(cosθ)