3.3 Solutions 241
Putα= 1 /aandβ=q/
F(q)≈ 4 πA
∫∞
0
re−αr
sinβr
β
dr
I=−
∂
∂α
∫∞
0
e−αrsinβrdr
=
− 1
β
∂
∂α
β
α^2 +β^2
=
1
β
2 αβ
(α^2 +β^2 )^2
=
2 α
(α^2 +β^2 )^2
=
2
α^3
(
1 +
β^2
α^2
)− 2
= 2 a^3 /(1+q^2 a^2 /^2 )
F(q)= 8 πAa^3 /
(
1 +q^2 /qo^2
)
, whereqo=/a
thusF(q)≈ 1 /
(
1 +q
2
q 02
) 2
(b) The characteristic radius
a=
qo
=
c
qoc
=
197 .3MeV−fm
0. 71 × 1 ,000 MeV
= 0 .278 fm
3.114 f(θ)=− 2 πμ 2
∫
V(r)eiq.rd^3 r
=−
μ
2 π^2
∫∞
r= 0
∫π
θ= 0
∫ 2 π
φ= 0
V(r)eiqrcosθr^2 sinθdθdφdr
=−
μ
2 π^2
∫∞
0
V(r)r^2 dr
∫+ 1
− 1
eiqrcosθd(cosθ
∫ 2 π
0
dφ
=−
2 μ
^2
∫
V(r)r^2 dr
qr
[
eiqr−e−iqr
2 i
]
=−
2 μ
q^2
∫
rsin(qr)V(r)dr
3.115 From the partial wave analysis of scattering the scattering amplitude
f(θ)=
1
k
Σl(2l+1)(ηlexp(2iδl)−1)/^2 i)pl(cosθ).
For elastic scattering without absorptionηl=1, and
f(θ)=
1
k
Σl(2l+1)
[
exp(2iδl)−1)/ 2 i
]
pl(cosθ)
=
1
k
Σl(2l+1) exp(iδl)sinδlpl(cosθ).
Now forθ= 0 ,pl(cosθ)=pl(1)=1 for any value ofl, and exp(iδl)=
cosδl+isinδl. Therefore the imaginary part of the forward scattering
amplitude
Im f(0)=
1
k
∑
l
(2l+1) sin^2 δl.