4.3 Solutions 287
4.67 Power radiated,P=σAT^4 = 4 πR^2 σT^4
P 2
P 1=
R^22
R^21
.
T 24
T 14
=
(4R 1 )^2
R^21
.
(2T 1 )^4
T 14
= 256
Furthermore,P 2
P 1
=
dQ 2 /dt
dQ 1 /dt=
m 2 s(dT/dt) 2
m 1 s(dT/dt) 1
wheresis the specific heat
Butm 2 ∝R 23 andm 1 ∝R^31∴(dT/dt) 2
(dT/dt) 1=
P 2
P 1
.
R^31
R^32
=
256
43
= 4
4.68 (a)λm.T=bT=b
λm=
2. 897 × 10 −^3
1 × 10 −^6
= 2 ,897 K
P 2
P 1
=
T 24
T 14
= 2
New temperature,T 2 =T 1 × 21 /^4 = 2 , 897 × 1. 189 = 3 ,445K
(b) The wavelength at which the radiation has maximum intensityλm=2. 897 × 10 −^3
3445
= 0. 84 × 10 −^6 m= 0. 84 μm4.69 The mean value∈is determined from;
∈=Σ∞n= 0 n∈e−βn∈
Σ∞n= 0 e−βn∈=−
d
dβln∑∞
n= 0e−βn∈=−
d
dβln(
1 +e−β∈+e−^2 β∈+···)
=−
d
dβln1
1 −e−β∈
where we have used the formula for the sum of terms of an infinite geometric
series.∈=∈e−β∈
1 −e−β∈=
∈
eβ∈− 1(β= 1 /kT)4.70 (a)uλdλ=8 πhc
λ^5.
1
ehc/λkT− 1dλ (Planck’s formula) (1)
For long wavelengths (low frequencies) and high temperatures the ratio
hc
λkT1 so that we can expand the exponential in (1) and retain only the
first two termsuλdλ=8 πhc
λ^5 [(1+hc/λkT+...)−1]=
8 πkT
λ^4dλwritingλ=cυ;dλ=−υc 2 dν