4.3 Solutions 289
=
2
15
(3.14159)^5 (1.38065)^4 × 10 −^92
(6. 626068 × 10 −^34 )^3 (2. 99792 × 108 )^2
= 5. 67 × 10 −^8 W-m−^2 -K−^4
a value which is in excellent agreement with the experiment.4.73 Number of modes per m^3 in the frequency interval dνis
N=8 πν^2 dν
c^3
But,
ν=c
λ;dν=−dλ
λ^2;λ=4 , 990 + 5 , 010
2
= 5 , 000 A^0
dλ= 5 , 010 − 4 , 990 = 20 A^0∴N=8 πdλ
λ^4=
8 π× 20 × 10 −^10
(5× 10 −^7 )^4= 8. 038 × 1017 /m^34.74 (a)
(1)
P=AEλdλ=8 πhcAdλ
λ^5 (ehc/λkT−1)(2)
Mean wavelengthλ= 0. 55 μm= 5. 5 × 10 −^7 m.
dλ=(0. 7 − 0 .4)μm= 3 × 10 −^7 m
A=πr^2 =π(2. 5 × 10 −^3 )^2 = 1. 96 × 10 −^5 m^2
hc
λkT=
(6. 63 × 10 −^34 )(3× 108 )
(5. 5 × 10 −^7 )(1. 38 × 10 −^23 )(4,000)
= 6. 55
Using the above values in (2) we find
P=AEλdλ= 0. 84 × 10 −^6 W= 0. 84 μW.(b)hν=hc
λ=
6. 63 × 10 −^34 × 3 × 108
5. 5 × 10 −^7
= 3. 616 × 10 −^19
Number of photons emitted per secondn=P
hν= 0. 84 × 10 −^6 / 3. 616 × 10 −^19 = 2. 32 × 1012 /s4.75uλdλ=
8 πhc
λ^51
ehc/λkT− 1dλ (1)Putλ=c/ν (2)and dλ=−(c
ν^2)
dν (3)in the RHS of (1) and simplifyuνdν=8 πhν^3
c^3 (ehν/kT−1)dν (4)