334 6 Special Theory of Relativity
6.4θ∗= 90 ◦
γ=γcγ∗= 1. 667 × 1. 038 = 1. 73
β=(1. 732 −1)^1 /^2 / 1. 73 = 0. 816
tanθ=sinθ∗/(γcβc/β∗)= 1 /(1. 667 × 0. 8 / 0 .268)= 0. 2
θ= 11. 3 ◦
6.5θ= 90 ◦
γ∗=γcγ(1−βcβcosθ)=γcγ
γ=γ∗/γc
γc= 1 /[1−(0.2)^2 ]^1 /^2 = 1. 02
γ∗= 1 /[1−(0.268)^2 ]^1 /^2 = 1. 038
γ= 1. 038 / 1. 02 = 1. 0176
β=(γ^2 −1)^1 /^2 /γ=(1. 01762 −1)^1 /^2 / 1. 0176 = 0. 185
tanθ∗=sinθ/γc(cosθ−βc/β∗)
=−β∗/βcγc(Becauseθ= 90 ◦)
βc=βπ= 0. 2
tanθ∗=− 0. 268 / 1. 02 × 0. 2 = 1. 3137
θ∗= 127 ◦
6.6 The scalar wave equation for the propagation of electromagnetic waves deriv-
able from Maxwell’s equations is:
(∂^2 /∂x^2 +∂^2 /∂y^2 +∂^2 /∂z^2 −(1/c^2 )∂^2 /∂t^2 )φ(x,y,z,t)=0(1)
for theSsystem. We are required to show that inS′system, the equation has
the form:
∂^2
∂x′^2
+
∂^2
∂y′^2
+
∂^2
∂z′^2
−
(
1
c^2
)(
∂^2
∂t′^2
)
φ(x′,y′,z′,t′)= 0
The Lorentz transformations are:
x′=γ(x−βct)(2)
y′=y (3)
z′=z (4)
t′=γ(t−βx′c)(5)
Assume that we have propagation along x-axis so that the wave func-
tion will depend only onx andt. Now the functionφ(x′,y′,z′,t′) = 0
is obtained fromφ(x,y,z,t) =0 by a substitution of variables. We have
φ(x,t)=φ(x′,t′). Then,
dφ=(∂φ/∂x)dx+(∂φ/∂t)dt=(∂φ/∂x′)dx′+(∂φ/∂t′)dt′ (6)
Differentiating (2) and (5),
dx′=γ(dx−βcdt)(7)
dt′=γ(dt−βcdt)(8)
Substituting (7) and (8) in (6) and equating the coefficients of dxand dt:
(∂φ/∂x)dx+(∂φ/∂t)dt=(γ∂φ/∂x′−γβc∂φ/∂t′)dx+
(γ∂φ/∂t′−γβc∂φ/∂x′)dt