400 7 Nuclear Physics – I
Therefore, Mean free pathλ= 1 /Σ= 0 .2cm
Fraction of scattered particles=Probability of scattering through more than
900 ist/λ= 10 −^5 / 0. 2 = 5 × 10 −^5.
7.19 rmin=R 20
[
1 +
(
+^4 b
2
R^20
) 12 ]
R 0 = 1. 44 zZ/T= 1. 44 × 1 × 50 /(1× 10 −^3 )= 7. 2 × 104 fm
bp=L=
b=/p=c/cp= 197 .3MeVfm/ 1 × 10 −^3 MeV= 1. 973 × 105 fm
b/R 0 = 1. 973 × 105 /(7. 2 × 104 )= 2. 74
rmin=^72.^2 × 104
[
1 +
(
1 + 4 × 2. 742
)^12 ]
= 2. 365 × 105 fm
7.20 The mean free pathλ= 1 /Σ= 1 /N.dσ (1)
whereNis the number of atoms per cm^3
N=N 0 ρ/A= 6. 02 × 1023 × 19. 3 / 197 = 5. 9 × 1022 (2)
dσ=(1. 44 zZ/ 4 T)^2 dΩ/sin^4 (θ/2) (3)
Putz= 1 ,Z= 79 ,θ= 60 ◦,dΩ=area/(distance)^2 = 0. 5 / 102 = 0. 005
Using these values in (3),dσ= 2 .588 fm^2
= 2. 588 × 10 −^26 cm^2 (4)
Using (2) and (4) in (1) we findλ=655 cm,
The probability of scattering at 60◦,
P=t/λ (5)
wheretis the foil thickness
t=pλ=(655× 1 / 5 × 106 )cm= 1. 31 μm.
7.21 The counting rate is dependent on the factor
(zZ/T)^2 (N 0 /A)(ρt/sin^4 (θ/2))
In the problemz,T,(ρt) andθare unchanged. Hence, counting rate with
platinum/counting rate with silver
=(Zpt^2 /Apt)/(ZAg^2 /AAg)= 1. 52
Substituting the known values:ZAg= 47 ,AAg= 108 .87 andApt=195, the
above equation can be solved to yieldZpt= 77 .55 or 78.
7.22 Let the particle of massm 1 , chargez, velocityvand kinetic energyTcollide
elastically with an electron of massm 2 =m. The electron velocity before
and after the collision isv 2 ∗=vcin the CMS. The velocityv 2 ∗is combined
vectorially with the CMS velocityvcto yield the LS velocityv 2 at angleφ
with the incident direction