1.3 Solutions 43
Thus the gamma function is an extension of the factorial function to numbers
which are not integers.1.24 B(m,n)=
∫ 1
0xm−^1 (1−x)n−^1 dx (1)With the substitutionx=sin 2Φ(1) becomesB(m,n)= 2∫π/ 20(sinΦ)^2 m−^1 (cosΦ)^2 n−^1 dΦ (2)NowΓ(n)= 2∫∞
0 y2 n− (^1) e−y^2 dy
Γ(m)= 2
∫∞
0y^2 m−^1 e−x2
dx∴Γ(m)Γ(n)= 4∫∞
0∫∞
0x^2 m−^1 y^2 n−^1 exp−(x^2 +y^2 )dxdy (3)The double integral may be evaluated as a surface integral in the first
quadrant of thexy-plane. Introducing the polar coordinatesx=rcosθand
y=rsinθ, the surface element ds=rdrdθ, (3) becomesΓ(m)Γ(n)= 4∫π/ 20∫∞
0r^2 m−^1 (cosθ)^2 m−^1 (sinθ)^2 n−^1 e−r2
rdrdθΓ(m)Γ(n)= 2∫π/ 20(cosθ)^2 m−^1 (sinθ)^2 n−^1 dθ. 2∫∞
0r2(m+n)−^1 e−r2
dr (4)In (4), the first integral is identified asB(m,n) and the second one as
Γ(m+n). It follows thatB(m,n)=Γ(m)Γ(n)
Γ(m+n)1.25 One form of Beta function is
2
∫π/ 20(cosθ)^2 m−^1 (sinθ)^2 n−^1 dθ=B(m,n)=Γ(m)Γ(n)
Γ(m+n)(m> 0 ,n>0)
(1)
Letting 2m− 1 =r, that ism=r+ 21 and 2n− 1 =0, that isn= 1 /2, (1)
becomes
∫π/ 20(cosθ)rdθ=1
2
Γ
(r+ 1
2)
Γ
( 1
2)
Γ
(r
2 +^1